Abbonarsi

Quality assurance of computer-aided detection and diagnosis in colonoscopy - 20/06/19

Doi : 10.1016/j.gie.2019.03.019 
Daniela Guerrero Vinsard, MD 1, 2, Yuichi Mori, MD, PhD 3, , Masashi Misawa, MD, PhD 3, Shin-ei Kudo, MD, PhD 3, Amit Rastogi, MD 4, Ulas Bagci, PhD 5, Douglas K. Rex, MD 6, Michael B. Wallace, MD, MPH 7
1 Showa University International Center for Endoscopy, Showa University Northern Yokohama Hospital, Yokohama, Japan 
2 Division of Internal Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA 
3 Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan 
4 Division of Gastroenterology, University of Kansas Medical Center, Kansas City, Kansas 
5 Center for Research in Computer Vision, University of Central Florida, Orlando, Florida 
6 Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana 
7 Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA 

Reprint requests: Yuichi Mori, MD, PhD, Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasakichuo, Tsuzuki, Yokohama 224-8503, Japan.Digestive Disease CenterShowa University Northern Yokohama Hospital35-1 ChigasakichuoTsuzukiYokohama224-8503Japan

Abstract

Recent breakthroughs in artificial intelligence (AI), specifically via its emerging sub-field “deep learning,” have direct implications for computer-aided detection and diagnosis (CADe and/or CADx) for colonoscopy. AI is expected to have at least 2 major roles in colonoscopy practice—polyp detection (CADe) and polyp characterization (CADx). CADe has the potential to decrease the polyp miss rate, contributing to improving adenoma detection, whereas CADx can improve the accuracy of colorectal polyp optical diagnosis, leading to reduction of unnecessary polypectomy of non-neoplastic lesions, potential implementation of a resect-and-discard paradigm, and proper application of advanced resection techniques. A growing number of medical-engineering researchers are developing both CADe and CADx systems, some of which allow real-time recognition of polyps or in vivo identification of adenomas, with over 90% accuracy. However, the quality of the developed AI systems as well as that of the study designs vary significantly, hence raising some concerns regarding the generalization of the proposed AI systems. Initial studies were conducted in an exploratory or retrospective fashion by using stored images and likely overestimating the results. These drawbacks potentially hinder smooth implementation of this novel technology into colonoscopy practice. The aim of this article is to review both contributions and limitations in recent machine-learning-based CADe and/or CADx colonoscopy studies and propose some principles that should underlie system development and clinical testing.

Il testo completo di questo articolo è disponibile in PDF.

Abbreviations : ADR, AI, APC, CADe, CADx, FDA, NPV, PIVI, PMR, PPV


Mappa


 DISCLOSURE: A. Rastogi is a consultant for Olympus Corp, Boston Scientific, and Cook Endoscopy and received grant support fromOlympus. D. Rex is a consultant for Olympus, Boston Scientific, Ferring Pharmaceuticals, Salix Pharmaceuticals, Aries Pharmaceuticals, and Medtronic. He has ownership in Satis Corporation and received research support fromEndoAid,Medivators, andOlympus. M. Wallace is a consultant for Olympus and received grant support fromBoston Scientific,Olympus,Medtronic, andCosmo Pharmaceuticals. All other authors disclosed no financial relationships relevant to this publication.


© 2019  American Society for Gastrointestinal Endoscopy. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 90 - N° 1

P. 55-63 - luglio 2019 Ritorno al numero
Articolo precedente Articolo precedente
  • A survival guide to HER2 testing in gastric/gastroesophageal junction carcinoma
  • Duminda Subasinghe, Nathan Acott, Marian Priyanthi Kumarasinghe
| Articolo seguente Articolo seguente
  • A phase III, multicenter, prospective, single-blinded, noninferiority, randomized controlled trial on the performance of a novel esophageal stent with an antireflux valve (with video)
  • Kulwinder S. Dua, John M. DeWitt, William R. Kessler, David L. Diehl, Peter V. Draganov, Mihir S. Wagh, Michel Kahaleh, Louis M. Wong Kee Song, Harshit S. Khara, Abdul H. Khan, Murad M. Aburajab, Darren Ballard, Chris E. Forsmark, Steven A. Edmundowicz, Brian C. Brauer, Amy Tyberg, Najtej S. Buttar, Douglas G. Adler

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.