Abbonarsi

A novel artificial intelligence system for the assessment of bowel preparation (with video) - 22/01/20

Doi : 10.1016/j.gie.2019.11.026 
Jie Zhou, MD 1, 2, 3, , Lianlian Wu, MD 1, 2, 3, , Xinyue Wan, MD 1, 2, 3, , Lei Shen, MD 1, 2, 3, Jun Liu, MS 1, 3, Jun Zhang, MD 1, 2, 3, Xiaoda Jiang, MD 1, 2, 3, Zhengqiang Wang, MD 1, 2, 3, Shijie Yu, MD 1, 2, 3, Jian Kang, MD 1, 2, 3, Ming Li, MD 1, 2, 3, Shan Hu, PhD 4, Xiao Hu, MS 4, Dexin Gong, MD 1, 2, 3, Di Chen, MD 1, 2, 3, Liwen Yao, MM 1, 2, 3, Yijie Zhu, MD 1, 2, 3, Honggang Yu, MD 1, 2, 3,
1 Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China 
2 Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China 
3 Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China 
4 School of Resources and Environmental Sciences, Wuhan University, Wuhan, China 

Reprint requests: Honggang Yu, MD, Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Rd, Wuhan 430060, Hubei Province, China.Department of GastroenterologyRenmin Hospital of Wuhan University99 Zhangzhidong RdWuhanHubei Province430060China

Abstract

Background and Aims

The quality of bowel preparation is an important factor that can affect the effectiveness of a colonoscopy. Several tools, such as the Boston Bowel Preparation Scale (BBPS) and Ottawa Bowel Preparation Scale, have been developed to evaluate bowel preparation. However, understanding the differences between evaluation methods and consistently applying them can be challenging for endoscopists. There are also subjective biases and differences among endoscopists. Therefore, this study aimed to develop a novel, objective, and stable method for the assessment of bowel preparation through artificial intelligence.

Methods

We used a deep convolutional neural network to develop this novel system. First, we retrospectively collected colonoscopy images to train the system and then compared its performance with endoscopists via a human-machine contest. Then, we applied this model to colonoscopy videos and developed a system named ENDOANGEL to provide bowel preparation scores every 30 seconds and to show the cumulative ratio of frames for each score during the withdrawal phase of the colonoscopy.

Results

ENDOANGEL achieved 93.33% accuracy in the human–machine contest with 120 images, which was better than that of all endoscopists. Moreover, ENDOANGEL achieved 80.00% accuracy among 100 images with bubbles. In 20 colonoscopy videos, accuracy was 89.04%, and ENDOANGEL continuously showed the accumulated percentage of the images for different BBPS scores during the withdrawal phase and prompted us for bowel preparation scores every 30 seconds.

Conclusions

We provided a novel and more accurate evaluation method for bowel preparation and developed an objective and stable system—ENDOANGEL—that could be applied reliably and steadily in clinical settings.

Il testo completo di questo articolo è disponibile in PDF.

Graphical abstract




Il testo completo di questo articolo è disponibile in PDF.

Abbreviations : AI, BBPS, DCNN


Mappa


 DISCLOSURE: The following author and department received research support for this study from the National Natural Science Foundation of China (grant no. 81672387) and the Key Project of Wuhan University (grant no. 2042018kf1035): H. Yu; and the Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision (grant no. 2018BCC337): Department of Gastroenterology, Renmin Hospital of Wuhan University. All other authors disclosed no financial relationships relevant to this publication.
 If you would like to chat with an author of this article, you may contact Dr Yu at yuhonggang1968@163.com.


© 2020  American Society for Gastrointestinal Endoscopy. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 91 - N° 2

P. 428 - febbraio 2020 Ritorno al numero
Articolo precedente Articolo precedente
  • Siri here, cecum reached, but please wash that fold: Will artificial intelligence improve gastroenterology?
  • Matthew B. McNeil, Seth A. Gross
| Articolo seguente Articolo seguente
  • ASGE guideline on the management of achalasia
  • Mouen A. Khashab, Marcelo F. Vela, Nirav Thosani, Deepak Agrawal, James L. Buxbaum, Syed M. Abbas Fehmi, Douglas S. Fishman, Suryakanth R. Gurudu, Laith H. Jamil, Terry L. Jue, Bijun Sai Kannadath, Joanna K. Law, Jeffrey K. Lee, Mariam Naveed, Bashar J. Qumseya, Mandeep S. Sawhney, Julie Yang, Sachin Wani

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.