Abbonarsi

Performance of deep learning for differentiating pancreatic diseases on contrast-enhanced magnetic resonance imaging: A preliminary study - 26/01/20

Doi : 10.1016/j.diii.2019.07.002 
X. Gao a, b, X. Wang a, b,
a Shanghai Institute of Medical Imaging, 200032 Shanghai, China 
b Department of Interventional Radiology, Fudan University Zhongshan Hospital, 200032 Shanghai, China 

Corresponding author at: Department of Interventional Radiology, Fudan University Zhongshan Hospital, No.180, Fenglin Road, Xuhui District, 200032 Shanghai, China.Department of Interventional Radiology, Fudan University Zhongshan HospitalNo.180, Fenglin Road, Xuhui DistrictShanghai200032China

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Purpose

The purpose of this study was to evaluate the ability of deep learning to differentiate pancreatic diseases on contrast-enhanced magnetic resonance (MR) images with the aid of generative adversarial network (GAN).

Materials and Methods

A total of 504 patients who underwent T1-weighted contrast-enhanced MR examinations before any treatments were included in this retrospective study. First, the MRI examinations of 398 patients (215 men, 183 women; mean age, 59.14±12.07 [SD] years [range: 16-85 years]) from one hospital were used as the training set. Then the MRI examinations of 50 (26 men, 24women; mean age, 58.58±13.64 [SD] years [range: 24–85 years]) and 56 (30 men, 26 women; mean age, 59.13±11.35 [SD] years [range: 26–80 years]) consecutive patients from two hospitals were separately collected as the internal and external validation sets. An InceptionV4 network was trained on the training set augmented by synthetic images from GANs. Classification performance of trained InceptionV4 network for every patch and every patient were made on both validation sets, respectively. The prediction agreement between convolutional neural network (CNN) and radiologist was measured by the Cohen's kappa coefficient.

Results

The patch-level average accuracy and the micro-averaging area under receiver operating characteristic curve (AUC) of InceptionV4 network were 71.56% and 0.9204 (95% confidence interval [CI]: 0.9165–0.9308) for the internal validation set, and 79.46% and 0.9451 (95%CI: 0.9320–0.9523) for the external validation set, respectively. The patient-level average accuracy and the micro-averaging AUC of InceptionV4 network were 70.00% and 0.8250 (95%CI: 0.8147–0.8326) for the internal validation, 76.79% and 0.8646 (95%CI: 0.8489–0.8772) for the external validation set, respectively. Evaluated by human reader, the average accuracy and micro-averaging AUC for internal and external validation sets were 82.00% and 0.8950 (95%CI: 0.8817–0.9083), 83.93% and 0.9063 (95%CI: 0.8968–0.9212), respectively. The Cohen's kappa coefficients between InceptionV4 network and human reader for the internal and external invalidation sets were 0.8339 (95%CI: 0.6991–0.9447) and 0.8862 (95%CI: 0.7759–0.9738), respectively.

Conclusion

Deep learning using CNN and GAN had the potential to differentiate pancreatic diseases on contrast-enhanced MR images.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Pancreatic diseases, Deep learning, Convolutional neural network (CNN), Generative adversarial network (GAN), Magnetic resonance imaging (MRI)


Mappa


© 2019  Société française de radiologie. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 101 - N° 2

P. 91-100 - febbraio 2020 Ritorno al numero
Articolo precedente Articolo precedente
  • How reproducible are classical and new CT-pelvimetry measurements?
  • C. Capelle, P. Devos, C. Caudrelier, P. Verpillat, T. Fourquet, P. Puech, C. Garabedian, L. Lemaitre
| Articolo seguente Articolo seguente
  • Acetic acid versus radiofrequency ablation for the treatment of hepatocellular carcinoma: A randomized controlled trial
  • S.B. Paul, S.K. Acharya, S.R. Gamanagatti, V. Sreenivas, S. Shalimar, M.S. Gulati

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.