Abbonarsi

Classification Performance-Based Feature Selection Algorithm for Machine Learning: P-Score - 01/09/20

Doi : 10.1016/j.irbm.2020.01.006 
M.K. Uçar
 Sakarya University, Faculty of Engineering, Electrical-Electronics Engineering, Sakarya, Turkey 

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

pagine 11
Iconografia 5
Video 0
Altro 0

Graphical abstract

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Feature selection algorithms are the cornerstone of machine learning. By increasing the properties of the samples and samples, the feature selection algorithm selects the significant features. The general name of the methods that perform this function is the feature selection algorithm. The general purpose of feature selection algorithms is to select the most relevant properties of data classes and to increase the classification performance. Thus, we can select features based on their classification performance. In this study, we have developed a feature selection algorithm based on decision support vectors classification performance. The method can work according to two different selection criteria. We tested the classification performances of the features selected with P-Score with three different classifiers. Besides, we assessed P-Score performance with 13 feature selection algorithms in the literature. According to the results of the study, the P-Score feature selection algorithm has been determined as a method which can be used in the field of machine learning.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Machine learning, Feature selection algorithm, Classification, P-Score


Mappa


© 2020  AGBM. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 41 - N° 4

P. 229-239 - agosto 2020 Ritorno al numero
Articolo precedente Articolo precedente
  • Novel PCG Analysis Method for Discriminating Between Abnormal and Normal Heart Sounds
  • O. El Badlaoui, A. Benba, A. Hammouch

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.