Abbonarsi

Actigraphy informs distinct patient-centered outcomes in Pre-COPD - 19/10/21

Doi : 10.1016/j.rmed.2021.106543 
Jianhong Chen a, b, c, 1 , Lemlem Weldemichael a, b, c, 1 , Siyang Zeng c, d , Brian Giang e , Jeroen Geerts f , Wendy Czerina Ching a, b, c , Melissa Nishihama a, b, c, Warren M. Gold a, c , Mehrdad Arjomandi a, b, c,
a Division of Pulmonary, Critical Care, Allergy and Immunology, and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA 
b Division of Occupational and Environmental Medicine, Department of Medicine, University of California, San Francisco, CA, USA 
c San Francisco Veterans Affairs Medical Center, San Francisco, California, USA 
d Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA 
e George Washington University, School of Medicine, Washington, DC, USA 
f Radboud University Medical Center, Nijmegen, the Netherlands 

Corresponding author. Division of Pulmonary and Critical Care Medicine University of California San Francisco San Francisco Veterans Affairs Medical Center Bldg 203, Room 3A-128, Mailstop 111-D 4150 Clement Street, San Francisco, CA, 94121, USA.Division of Pulmonary and Critical Care Medicine University of California San Francisco San Francisco Veterans Affairs Medical Center Bldg 203Room 3A-128, Mailstop 111-D 4150 Clement StreetSan FranciscoCA94121USA

Abstract

Background

Actigraphy can provide useful patient-centered outcomes for quantification of physical activity in the “real-world” setting.

Methods

To characterize the relationship of actigraphy outputs with “in-laboratory” measures of cardiopulmonary function and respiratory symptoms in pre-COPD, we obtained actigraphy data for 8 h/day for 5 consecutive days a week before in-laboratory administration of respiratory questionnaires, PFT, and CPET to a subgroup of subjects participating in the larger study of the health effects of exposure to secondhand tobacco smoke who had air trapping but no spirometric obstruction (pre-COPD). Using machine learning approaches, we identified the most relevant actigraphy predictors and examined their associations with symptoms, lung function, and exercise outcomes.

Results

Sixty-one subjects (age = 66±7 years; BMI = 24±3 kg/m2; FEV1/FVC = 0.75 ± 0.05; FEV1 = 103 ± 17 %predicted) completed the nested study. In the hierarchical cluster analysis, the activity, distance, and energy domains of actigraphy, including moderate to vigorous physical activity, were closely correlated with each other, but were only loosely associated with spirometric and peak exercise measures of oxygen consumption, ventilation, oxygen-pulse, and anaerobic threshold (VO2AT), and were divergent from symptom measures. Conversely, the sedentary domain clustered with respiratory symptoms, air trapping, airflow indices, and ventilatory efficiency. In Regression modeling, sedentary domain was inversely associated with baseline lung volumes and tidal breathing at peak exercise, while the activity domains were associated with VO2AT. Respiratory symptoms and PFT data were not associated with actigraphy outcomes.

Discussion

Outpatient actigraphy can provide information for “real-world” patient-centered outcomes that are not captured by standardized respiratory questionnaires, lung function, or exercise testing. Actigraphy activity and sedentary domains inform of distinct outcomes.

Il testo completo di questo articolo è disponibile in PDF.

Graphical abstract




Image 1

Il testo completo di questo articolo è disponibile in PDF.

Highlights

Actigraphy provides objective data on daily physical activity and functional status.
In pre-COPD, actigraphy best represents functional status rather than capacity.
Activity vs. sedentary domains of actigraphy inform of distinct, divergent outcomes.
Actigraphy could serve as an objective patient-centered outcome for clinical trials.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Actigraphy, Machine learning, Secondhand tobacco smoke, COPD, Pre-COPD, Air trapping, Cardiopulmonary exercise, Pulmonary function testing


Mappa


© 2021  Pubblicato da Elsevier Masson SAS.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 187

Articolo 106543- ottobre 2021 Ritorno al numero
Articolo precedente Articolo precedente
  • Mortality differences in pulmonary fibrosis among the most populated states in the United States
  • Niranjan Jeganathan, Matheni Sathananthan
| Articolo seguente Articolo seguente
  • Clinical spectrum of children with interstitial pneumonia with autoimmune features
  • Dilber Ademhan Tural, Nagehan Emiralioglu, Beste Ozsezen, Birce Sunman, Halime Nayir Buyuksahin, Ismail Guzelkas, Berna Oguz, Yelda Bilginer, Diclehan Orhan, Ebru Yalcin, Deniz Dogru, Ugur Ozcelik, Seza Ozen, Nural Kiper

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.