Abbonarsi

Iterative denoising accelerated 3D SPACE FLAIR sequence for brain MR imaging at 3T - 04/01/22

Doi : 10.1016/j.diii.2021.09.004 
Michael Eliezer a, b, , Alexis Vaussy c, Solenn Toupin c, Rémy Barbe a, Stephan Kannengiesser d, Alto Stemmer d, Emmanuel Houdart a, b
a Department of Neuroradiology, Lariboisiere University Hospital, 75010 Paris, France 
b Université de Paris, Faculté de Médecine, 75010 Paris, France 
c Siemens Healthineers France, 93210 Saint-Denis, France 
d Siemens Healthineers, 91052 Erlangen, Germany 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Highlights

A 37% scanning time reduction is obtained with 3D FLAIR while preserving image quality for brain MRI using iterative denoising (ID).
Higher degrees of interobserver agreement for image quality ,are obtained with accelerated FLAIR with ID compared to accelerated FLAIR without ID.
The use of ID reconstruction results in greater SNR and CNR with accelerated 3D FLAIR.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Purpose

The purpose of this study was to prospectively evaluate image quality of three-dimensional fluid attenuated inversion recovery (3D-FLAIR) sequence acquired with a high acceleration factor and reconstructed with iterative denoising (ID) for brain magnetic resonance imaging (MRI) at 3-T.

Material and methods

Patients with brain tumor who underwent brain MRI were consecutively included. Two 3D-FLAIR sequences were successively performed for each patient. A first conventional FLAIR acquisition (conv-FLAIR) was performed with an acceleration factor of 6. The second acquisition was performed with an increased acceleration factor of 9. Two series one without ID (acc-FLAIR) and one with ID (acc-FLAIR-ID) were reconstructed. Two neuroradiologists independently assessed image quality, deep brain nuclei visualization and white matter/gray matter (WM/GM) differentiation on a 4-point scale.

Results

Thirty patients with brain tumor were consecutively included in this study. There were 16 women and 14 men with a mean age of 54 ± 17 (SD) years (range: 22–78 years). Scanning time of Acc-FLAIR-ID and Acc-FLAIR (4 min 40 sec) was 37% shorter than that of conv-FLAIR (2 min 50 sec) (P < 0.01). Improved image quality score was significantly different for both conv-FLAIR and acc-FLAIR-ID compared to acc-FLAIR (P < 0.01 for both). WM/GM differentiation score of conv-FLAIR was not significantly different compared to acc-FLAIR-ID (P = 0.10). Improved WM/GM differentiation score was different for both sequences compared to acc-FLAIR (P = 0.017 and P < 0.001). Deep brain nuclei visualization score was not different between conv-FLAIR and acc-FLAIR-ID (P = 0.71). However, the improved deep brain nuclei visualization score was significantly different for both sequences compared to acc-FLAIR (P < 0.001 for both).

Conclusion

Scanning time of 3D-FLAIR sequence using a high acceleration factor reconstructed with ID algorithm can be reduced by 37% while preserving image quality for brain MRI.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Magnetic resonance imaging (MRI), 3D FLAIR, Iterative denoising, Brain MRI

Abbreviations : 3D, FLAIR, acc-FLAIR, acc-FLAIR-ID, CAIPIRINHA, CI, CNR, conv-FLAIR, CS, GRAPPA, ID, MPRAGE, MRI, PI, SD, SENSE, SNR, SPACE, STROBE, VIBE, WM/GM, TSE


Mappa


© 2021  Société française de radiologie. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 103 - N° 1

P. 13-20 - gennaio 2022 Ritorno al numero
Articolo precedente Articolo precedente
  • Hemorrhoid embolization: A review of current evidences
  • Reza Talaie, Pooya Torkian, Arash Dooghaie Moghadam, Farouk Tradi, Vincent Vidal, Marc Sapoval, Jafar Golzarian
| Articolo seguente Articolo seguente
  • Comparison of two deep learning image reconstruction algorithms in chest CT images: A task-based image quality assessment on phantom data
  • Joël Greffier, Julien Frandon, Salim Si-Mohamed, Djamel Dabli, Aymeric Hamard, Asmaa Belaouni, Philippe Akessoul, Francis Besse, Boris Guiu, Jean-Paul Beregi

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.