A deep learning-based comparative study to track mental depression from EEG data - 15/01/22

Doi : 10.1016/j.neuri.2022.100039 
Avik Sarkar a, , Ankita Singh b, Rakhi Chakraborty b
a JIS College of Engineering, Kalyani, Nadia, West Bengal, India 
b Global Institute of Management and Technology, Krisnanagar, Nadia, West Bengal, India 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Background

Modern day's society is engaged in commitment-based and time-bound jobs. This invites tension and mental depression among many people who are not able to cope up with this type of working environment. Cases of mental depression are increasing day by day all over the world. Recently, the onset of the COVID-19 pandemic has added further fuel to the fire. In many countries, the ratio between patients with mental depression and psychiatrists or psychologists is remarkably poor. Under such a situation, the design, and development of an expert system by exploiting the hidden power of various deep learning (DL) and machine learning (ML) techniques can solve the problem up to a greater extent.

Methodology

Each deep learning and machine learning technique has got its advantages and disadvantages to handle different classification problems. In this article four neural network-based deep learning architectures namely MLP, CNN, RNN, RNN with LSTM, and two Supervised Machine Learning Techniques such as SVM and LR are implemented to investigate and compare their suitability to track the mental depression from EEG Data.

Result

Among Neural Network-Based Deep Learning techniques RNN model has achieved the highest accuracy with 97.50% in Training Set and 96.50% in the Testing set respectively. It has been followed with RNN with LSTM model when there were 40% data in the Testing Set. Whereas both the Supervised Machine Learning Models namely SVM and LR have outperformed with 100.00% accuracies in Training Phase and approximately 97.25% accuracies in Testing Phase respectively.

Conclusion

This investigation and comparison-oriented study establish the suitability of RNN, RNN with LSTM, SVM and LR model to track mental depression from EEG data. This type of comparative research using Machine Learning and Deep learning architectures must be framed out on this topic to finalize the design and development of an expert system for the automatic detection of depression from EEG data.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Multi-layer perceptron (MLP), Convolution neural network with MLP as a classifier (CNN), Recurrent neural network (RNN), RNN with LSTM (long- and short-term memory), Support vector machine (SVM), Logistic regression (LR), Mental depression tracker


Mappa


© 2022  The Author(s). Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 2 - N° 4

Articolo 100039- dicembre 2022 Ritorno al numero
Articolo precedente Articolo precedente
  • Multiclass skin cancer classification using EfficientNets – a first step towards preventing skin cancer
  • Karar Ali, Zaffar Ahmed Shaikh, Abdullah Ayub Khan, Asif Ali Laghari
| Articolo seguente Articolo seguente
  • A systematic review of artificial intelligence for pediatric physiotherapy practice: Past, present, and future
  • Ravula Sahithya Ravali, Thangavel Mahalingam Vijayakumar, Karunanidhi Santhana Lakshmi, Dinesh Mavaluru, Lingala Viswanath Reddy, Mervin Retnadhas, Tintu Thomas

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.