Abbonarsi

Automated Deep Transfer Learning-Based Approach for Detection of COVID-19 Infection in Chest X-rays - 24/03/22

Doi : 10.1016/j.irbm.2020.07.001 
N. Narayan Das a, N. Kumar b, M. Kaur c, , V. Kumar d, D. Singh e
a Department of Information Technology, School of Computing and Information Technology, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India 
b Department Of Computer Science and Engineering, Maharaja Surajmal Institute of Technology, Janakpuri, New Delhi, 110058, India 
c Department of Computer and Communication Engineering, School of Computing and Information Technology, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India 
d Department of Computer Science and Engineering, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, 177005, India 
e Department of Computer Science and Engineering, School of Computing and Information Technology, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Graphical abstract

Il testo completo di questo articolo è disponibile in PDF.

Highlights

COVID-19 reveals radiological signatures that can be detected using chest X-rays.
The evaluation of radiological signatures is a time-consuming and error-prone task.
Therefore, there is a need to automate the analysis of chest X-rays.
An automatic analysis of chest X-rays is achieved using deep learning models.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

The most widely used novel coronavirus (COVID-19) detection technique is a real-time polymerase chain reaction (RT-PCR). However, RT-PCR kits are costly and take 6-9 hours to confirm infection in the patient. Due to less sensitivity of RT-PCR, it provides high false-negative results. To resolve this problem, radiological imaging techniques such as chest X-rays and computed tomography (CT) are used to detect and diagnose COVID-19. In this paper, chest X-rays is preferred over CT scan. The reason behind this is that X-rays machines are available in most of the hospitals. X-rays machines are cheaper than the CT scan machine. Besides this, X-rays has low ionizing radiations than CT scan. COVID-19 reveals some radiological signatures that can be easily detected through chest X-rays. For this, radiologists are required to analyze these signatures. However, it is a time-consuming and error-prone task. Hence, there is a need to automate the analysis of chest X-rays. The automatic analysis of chest X-rays can be done through deep learning-based approaches, which may accelerate the analysis time. These approaches can train the weights of networks on large datasets as well as fine-tuning the weights of pre-trained networks on small datasets. However, these approaches applied to chest X-rays are very limited. Hence, the main objective of this paper is to develop an automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays by using the extreme version of the Inception (Xception) model. Extensive comparative analyses show that the proposed model performs significantly better as compared to the existing models.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Deep learning, COVID-19, Chest x-ray, Transfer learning


Mappa


© 2020  AGBM. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 43 - N° 2

P. 114-119 - aprile 2022 Ritorno al numero
Articolo precedente Articolo precedente
  • Classification of Motor Imagery EEG Based on Time-Domain and Frequency-Domain Dual-Stream Convolutional Neural Network
  • E. Huang, X. Zheng, Y. Fang, Z. Zhang
| Articolo seguente Articolo seguente
  • Artificial Immune Systems-Based Classification Model for Code-Mixed Social Media Data
  • S. Shekhar, D.K. Sharma, D.K. Agarwal, Y. Pathak

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.