An algorithm for identifying chronic kidney disease in the French national health insurance claims database - 21/07/22

Doi : 10.1016/j.nephro.2022.03.003 
Imène Mansouri a, b, Maxime Raffray c, Mathilde Lassalle d, Florent de Vathaire b, e, Brice Fresneau e, f, Chiraz Fayech e, f, Hélène Lazareth g, Nadia Haddy b, e, Sahar Bayat c, Cécile Couchoud c, h,

group REDSIAM1

  Other collaborators of the groupe REDSIAM (www.redsiam.fr/): Marie Erbault, Karen Assmann, Nelly Le Guen, Nathalie Poutignat (Haute Autorité de santé), Marine Desbouvries, Sabrina Matz, Lise Thiriet (DRSM Hauts de France), Cyrielle Parmentier (APHP), Marie Metzger, Aghiles Hamroun (Inserm), Philippe Tuppin (CNAM), Fistsum Guebre-Egziabher (HCL), Olivier Moranne (CHU de Nîmes), Isabella Vanorio Vega (ABM).

a EPI-PHARE (French National Agency for Medicines and Health Products Safety [ANSM] and French National Health Insurance [CNAM]), Saint-Denis, France 
b Center for research epidemiology and population health, Radiation epidemiology team, Université Paris-Saclay, Université Paris-Sud, UVSQ, 94805 Villejuif, France 
c University Rennes, EHESP, REPERES (Recherche en pharmaco-épidémiologie et recours aux soins)–EA 7449, 35000 Rennes, France 
d REIN registry, Agence de la biomédecine, 1, avenue du Stade de France, 93212 Saint-Denis-La Plaine, France 
e Department of children and adolescent oncology, Gustave-Roussy, Université Paris-Saclay, 94805 Villejuif, France 
f Cancer and Radiation, CESP, Unit 1018 Inserm, Villejuif, France 
g Service Évaluation et Outils pour la Qualité et la Sécurité des Soins, Direction de l’Amélioration de la Qualité et de la Sécurité des Soins, Haute Autorité de santé, Saint-Denis, France 
h Université Lyon I, CNRS, UMR 5558, Laboratoire de biométrie et biologie évolutive, équipe biostatistique santé, Villeurbanne, France 

Corresponding author.

Abstract

Background

Published algorithms for identifying chronic kidney disease in healthcare claims databases have poor performance except in patients with renal replacement therapy. We propose and describe an algorithm to identify all stage chronic kidney disease in a French healthcare claims databases and assessed its performance by using data from the Renal Epidemiology and Information Network registry and the French Childhood Cancer Survivor Study cohort.

Methods

A group of experts met several times to define a list of items and combinations of items that could be related to chronic kidney disease. For the French Childhood Cancer Survivor Study cohort, information on confirmed chronic kidney disease cases extracted from medical records was considered the gold standard (KDIGO definition). Sensitivity, specificity, and positive and negative predictive value and kappa coefficients were estimated. The contribution of each component of the algorithm was assessed for 1 and 2 years before the start of renal replacement therapy for confirmed end-stage kidney disease in the Renal Epidemiology and Information Network registry.

Results

The algorithm's sensitivity was 78%, specificity 97.4%, negative predictive value 98.4% and positive predictive value 68.7% in French Childhood Cancer Survivor Study cohort and the kappa coefficient was 0.79 for agreement with the gold standard. The algorithm 93.6% and 55.1% of confirmed incident end-stage kidney disease cases from the Renal Epidemiology and Information Network registry when considering 1 year and 2 years, respectively, before renal replacement therapy start.

Conclusions

The algorithm showed good performance among younger patients and those with end-stage kidney disease in the twol last years prior to renal replacement therapy. Future research will address the ability of the algorithm to detect early chronic kidney disease stages and to classify the severity of chronic kidney disease.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Algorithms, Chronic kidney disease, Healthcare claims databases, Validation studies


Mappa


© 2022  Pubblicato da Elsevier Masson SAS.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 18 - N° 4

P. 255-262 - luglio 2022 Ritorno al numero
Articolo precedente Articolo precedente
  • Hypertrophie ventriculaire gauche chez les hémodialysés : prévalence, étude électrique, échographique et facteurs de risque
  • Soumaya Chargui, Emna Allouche, Wiem Dkhil, Sahar Agrebi, Habib Ben Ahmed, Khaled Ezzaouia, Mariem Hajji, Asma Ezzamouri, Leila Basdah, Fethi Ben Hamida, Amel Harzallah, Ezzeddine Abderrahim
| Articolo seguente Articolo seguente
  • « Jeux sérieux », une nouvelle approche pour aborder le projet de soins anticipé avec les patients dialysés
  • Pascale Lefuel, Catherine Bollondi Pauly, Anne Dufey Teso, Pierre-Yves Martin, Monica Escher, Laurence Séchaud, Gora Da Rocha

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.