Abbonarsi

Classification of Early Stages of Esophageal Cancer Using Transfer Learning - 28/07/22

Doi : 10.1016/j.irbm.2021.10.003 
Chempak Kumar A , D.M.N. Mubarak
 Department of Computer Science, University of Kerala, Trivandrum, Kerala, India 

Corresponding author.

Graphical abstract

Il testo completo di questo articolo è disponibile in PDF.

Highlights

Studies revealed a 5-fold increase in EAC patients diagnosed with Esophagitis.
Those with Barrett's Esophagus have a greater risk of EAC.
Deep Convolution Neural Networks (DCNN) is used to perform classification.
The ResNet50 model with transfer learning gives a better performance.
The DCNN is effective for both as feature extractors and classification models.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Objectives

Esophageal Cancer is the sixth most common cancer with a high fatality rate. Early prognosis of esophageal abnormalities can improve the survival rate of the patients. The sequence of the progress of the esophageal cancer is from esophagitis to non-dysplasia Barrett's esophagus to dysplasia Barrett's esophagus to esophageal adenocarcinoma (EAC). Many studies revealed a 5-fold increase in EAC patients diagnosed with esophagitis, and those diagnosed with Barrett's esophagus have a greater risk of EAC.

Material and methods

Convolutional Neural Network (CNN) with efficient feature extractors enable better prognosis of the pre cancerous stage, Barrett's esophagus and esophagitis. The transfer learning techniques with CNN can extract more relevant features for the automated classification of Barrett's esophagus and esophagitis. This paper presents a study on the classification of the esophagitis and Barrett's esophagus (BE) using Deep Convolution Neural Networks (DCNN).

Results

In the first experiment, the DCNN models perform as a feature extractor, and standard classifiers do the classification. The performance analysis shows that the CNN model ResNet50 with Support Vector Machine (SVM) has an accuracy of 93.5%, recall 93.5%, precision 93.4%, f score 93.5%, AUC 89.8%. In the second experiment, the DCNN classification models perform the classification with Transfer Learning and fine-tuning. The ResNet50 model has improved accuracy of 94.46%, precision 94.46%, f score 94.46%, AUC 96.20%.

Conclusion

The ResNet50 model with transfer learning and fine-tuning gives a better performance than the ResNet50 model with SVM classifier. Our experiments show that the DCNN is effective for diagnosing EAC, both as feature extractors and classification models with transfer learning and fine-tuning.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Barrett's esophagus, Deep convolution neural networks, Esophagitis, ResNet50, Support vector machine


Mappa


© 2021  AGBM. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 43 - N° 4

P. 251-258 - agosto 2022 Ritorno al numero
Articolo precedente Articolo precedente
  • Contents
| Articolo seguente Articolo seguente
  • SNOROSALAB: A Method Facilitating the Diagnosis of Sleep Breathing Disorders Before Polysomnography
  • M. Kayabekir, M. Yağanoğlu, C. Köse

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.