Abbonarsi

3D convolutional neural network model from contrast-enhanced CT to predict spread through air spaces in non-small cell lung cancer - 03/11/22

Doi : 10.1016/j.diii.2022.06.002 
Junli Tao a, b, 1, Changyu Liang a, b, 1, Ke Yin a, b, Jiayang Fang a, b, Bohui Chen a, b, Zhenyu Wang a, b, Xiaosong Lan a, b, Jiuquan Zhang a, b,
a Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030 PR China 
b Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400044, PR China 

Corresponding author at: Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030 PR China.Department of RadiologyChongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqing400030PR China

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Highlights

CT-based convolutional neural network (CNN) model can predict spread through air space in non-small cell lung cancer with high accuracy.
CNN model is superior to other four models (clinicopathological/CT model, conventional radiomics model, computer vision model, and combined model) to predict spread through air space in non-small cell lung cancer.
The CNN model yields an AUC of 0.93 (95% CI: 0.70–0.82) for predicting spread through air space in non-small cell lung cancer.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Purpose

The purpose of this study was to compare the efficacy of five non-invasive models, including three-dimensional (3D) convolutional neural network (CNN) model, to predict the spread through air spaces (STAS) status of non-small cell lung cancer (NSCLC), and to obtain the best prediction model to provide a basis for clinical surgery planning.

Materials and methods

A total of 203 patients (112 men, 91 women; mean age, 60 years; age range 22–80 years) with NSCLC were retrospectively included. Of these, 153 were used for training cohort and 50 for validation cohort. According to the image biomarker standardization initiative reference manual, the image processing and feature extraction were standardized using PyRadiomics. The logistic regression classifier was used to build the model. Five models (clinicopathological/CT model, conventional radiomics model, computer vision (CV) model, 3D CNN model and combined model) were constructed to predict STAS by NSCLC. Area under the receiver operating characteristic curves (AUC) were used to validate the capability of the five models to predict STAS.

Results

For predicting STAS, the 3D CNN model was superior to the clinicopathological/CT model, conventional radiomics model, CV model and combined model and achieved satisfactory discrimination performance, with an AUC of 0.93 (95% CI: 0.70–0.82) in the training cohort and 0.80 (95% CI: 0.65–0.86) in the validation cohort. Decision curve analysis indicated that, when the probability of the threshold was over 10%, the 3D CNN model was beneficial for predicting STAS status compared to either treating all or treating none of the patients within certain ranges of risk threshold

Conclusion

The 3D CNN model can be used for the preoperative prediction of STAS in patients with NSCLC, and was superior to the other four models in predicting patients' risk of developing STAS.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Computer vision, Conventional radiomics, Deep learning, Non-small cell lung cancer, Spread through air spaces

Abbreviations : 2D, 3D, AIC, AUC, CNN, CT, CV, DICOM, EGFR, IBSI, ICC, NSCLC, ROC, STAS, VOI


Mappa


© 2022  Société française de radiologie. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 103 - N° 11

P. 535-544 - novembre 2022 Ritorno al numero
Articolo precedente Articolo precedente
  • Liver imaging reporting and data system (LI-RADS) v2018: Reliability and agreement for assessing hepatocellular carcinoma locoregional treatment response
  • Ahmed S. Abdelrahman, Mena E.Y. Ekladious, Ethar M. Badran, Sherihan S. Madkour
| Articolo seguente Articolo seguente
  • Reproducibility of apparent diffusion coefficient measurement in normal prostate peripheral zone at 1.5T MRI
  • Au Hoang-Dinh, Trung Nguyen-Quang, Lenh Bui-Van, Christelle Gonindard-Melodelima, Rémi Souchon, Olivier Rouvière

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.