Abbonarsi

Computer-assisted detection versus conventional colonoscopy for proximal colonic lesions: a multicenter, randomized, tandem-colonoscopy study - 19/01/23

Doi : 10.1016/j.gie.2022.09.020 
Thomas K.L. Lui, MBBS, MMedSc 1, Dao Viet Hang, MD, PhD 2, Stephen K.K. Tsao, MD 3, Cynthia K.Y. Hui, MBBS 1, Loey Lung Yi Mak, MD 1, Michael K.L. Ko, MBBS 1, Ka Shing Cheung, MD 1, M.Y. Thian, MD 3, R. Liang, MD 3, Vivien W.M. Tsui, MBBS 1, Chung Kwong Yeung, MD, PhD 4, L.V. Dao, MD 5, Wai K. Leung, MD 1,
1 Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China 
4 Department of Surgery, University of Hong Kong, Hong Kong, China 
2 Internal Medicine Faculty, Hanoi Medical University, Hanoi, Vietnam 
3 Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore 
5 Institute of Gastroenterology and Hepatology, Hanoi, Vietnam 

Reprint request: Wai K, Leung, MD, Department of Medicine, 4/F, Professorial Block, Queen Mary Hospital, 102 Pokfulam Rd, HKG Hong Kong.Department of MedicineQueen Mary Hospital4/F, Professorial Block102 Pokfulam RdHKG Hong Kong

Abstract

Background and Aims

Computer-assisted detection (CADe) is a promising technologic advance that enhances adenoma detection during colonoscopy. However, the role of CADe in reducing missed colonic lesions is uncertain. The aim of this study was to determine the miss rates of proximal colonic lesions by CADe and conventional colonoscopy.

Methods

This was a prospective, multicenter, randomized, tandem-colonoscopy study conducted in 3 Asian centers. Patients were randomized to receive CADe or conventional white-light colonoscopy during the first withdrawal of the proximal colon (cecum to splenic flexure), immediately followed by tandem examination of the proximal colon with white light in both groups. The primary outcome was adenoma/polyp miss rate, which was defined as any adenoma/polyp detected during the second examination.

Results

Of 223 patients (48.6% men; median age, 63 years) enrolled, 7 patients did not have tandem examination, leaving 108 patients in each group. There was no difference in the miss rate for proximal adenomas (CADe vs conventional: 20.0% vs 14.0%, P = .07) and polyps (26.7% vs 19.6%, P = .06). The CADe group, however, had significantly higher proximal polyp (58.0% vs 46.7%, P = .03) and adenoma (44.7% vs 34.6%, P = .04) detection rates than the conventional group. The mean number of proximal polyps and adenomas detected per patient during the first examination was also significantly higher in the CADe group (polyp: 1.20 vs .86, P = .03; adenoma, .91 vs .61, P = .03). Subgroup analysis showed that CADe enhanced proximal adenoma detection in patients with fair bowel preparation, shorter withdrawal time, and endoscopists with lower adenoma detection rate.

Conclusions

This multicenter trial from Asia confirmed that CADe can further enhance proximal adenoma and polyp detection but may not be able to reduce the number of missed proximal colonic lesions. (Clinical trial registration number: NCT04294355.)

Il testo completo di questo articolo è disponibile in PDF.

Abbreviations : ADR, aOR, BBPS, CADe, CI, CRC


Mappa


 DISCLOSURE: The following authors disclosed financial relationships: C. K. Yeung: Founder of NISI(HK) Limited. W. K. Leung: Advisory committee for NISI(HK) Limited; consultant for Medtronic. All other authors disclosed no financial relationships.


© 2023  American Society for Gastrointestinal Endoscopy. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 97 - N° 2

P. 325 - febbraio 2023 Ritorno al numero
Articolo precedente Articolo precedente
  • Motorized spiral enteroscopy versus double-balloon enteroscopy: a case-matched study
  • Webber Chan, Lim Kim Wei, Terence Tan, Lim Gek Hsiang, Christopher Kong, Ennaliza Salazar, Doreen Koay, Christopher Khor, Ravishankar Asokkumar
| Articolo seguente Articolo seguente
  • Novel deep learning–based computer-aided diagnosis system for predicting inflammatory activity in ulcerative colitis
  • Yanyun Fan, Ruochen Mu, Hongzhi Xu, Chenxi Xie, Yinghao Zhang, Lupeng Liu, Lin Wang, Huaxiu Shi, Yiqun Hu, Jianlin Ren, Jing Qin, Liansheng Wang, Shuntian Cai

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.