Abbonarsi

Novel deep learning–based computer-aided diagnosis system for predicting inflammatory activity in ulcerative colitis - 19/01/23

Doi : 10.1016/j.gie.2022.08.015 
Yanyun Fan, MD 1, 2, , Ruochen Mu, MSC 3, , Hongzhi Xu, MD 1, 2, , Chenxi Xie, MD 1, 4, Yinghao Zhang, MSC 3, Lupeng Liu, MM 1, 4, Lin Wang, MB 1, 2, Huaxiu Shi, MD 1, 2, Yiqun Hu, MD 1, 4, Jianlin Ren, MD 1, 2, Jing Qin, PhD 5, Liansheng Wang, PhD 3, , Shuntian Cai, MD 1, 4,
1 Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China 
4 Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China 
2 Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, China 
3 Department of Computer Science, Xiamen University, Xiamen, China 
5 Center for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China 

Reprint requests: Liansheng Wang, PhD, Department of Computer Science, Xiamen University, Xiamen, China.Department of Computer ScienceXiamen UniversityXiamen 361004China∗∗Shuntian Cai, MD, Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, No. 201-209 Hubinnan Road, Siming District, Xiamen 361004, China.Department of GastroenterologyZhongshan Hospital of Xiamen UniversitySchool of MedicineNo. 201-209 Hubinnan Road, Siming DistrictXiamen 361004China

Abstract

Background and Aims

Endoscopy is increasingly performed for evaluating patients with ulcerative colitis (UC). However, its diagnostic accuracy is largely affected by the subjectivity of endoscopists’ experience and scoring methods, and scoring of selected endoscopic images cannot reflect the inflammation of the entire intestine. We aimed to develop an automatic scoring system using deep-learning technology for consistent and objective scoring of endoscopic images and full-length endoscopic videos of patients with UC.

Methods

We collected 5875 endoscopic images and 20 full-length videos from 332 patients with UC who underwent colonoscopy between January 2017 and March 2021. We trained the artificial intelligence (AI) scoring system using these images, which was then used for full-length video scoring. To more accurately assess and visualize the full-length intestinal inflammation, we divided the large intestine into a fixed number of “areas” (cecum, 20; transverse colon, 20; descending colon, 20; sigmoid colon, 15; rectum, 10). The scoring system automatically scored inflammatory severity of 85 areas from every video and generated a visualized result of full-length intestinal inflammatory activity.

Results

Compared with endoscopist scoring, the trained convolutional neural network achieved 86.54% accuracy in the Mayo-scored task, whereas the kappa coefficient was .813 (95% confidence interval [CI], .782-.844). The metrics of the Ulcerative Colitis Endoscopic Index of Severity–scored task were encouraging, with accuracies of 90.7%, 84.6%, and 77.7% and kappa coefficients of .822 (95% CI, .788-.855), .784 (95% CI, .744-.823), and .702 (95% CI, .612-.793) for vascular pattern, erosions and ulcers, and bleeding, respectively. The AI scoring system predicted each bowel segment’s score and displayed distribution of inflammatory activity in the entire large intestine using a 2-dimensional colorized image.

Conclusions

We established a novel deep learning–based scoring system to evaluate endoscopic images from patients with UC, which can also accurately describe the severity and distribution of inflammatory activity through full-length intestinal endoscopic videos.

Il testo completo di questo articolo è disponibile in PDF.

Abbreviations : AI, CADx, CNN, MMES, UC, UCEIS


Mappa


 DISCLOSURE: All authors disclosed no financial relationships. Research support for this study was provided by the Science and Technology Planning Project of Fujian Province (2019J01554), Fujian Provincial Natural Science Foundation (2020J05286), Medical Health Science and Technology Project of Xiamen (3502Z20199172, 3502Z20209026), Xiamen Key Programs of National Health (3502Z20204007), and the Fundamental Research Funds for the Central Universities (grant no. 20720210121).


© 2023  American Society for Gastrointestinal Endoscopy. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 97 - N° 2

P. 335-346 - febbraio 2023 Ritorno al numero
Articolo precedente Articolo precedente
  • Computer-assisted detection versus conventional colonoscopy for proximal colonic lesions: a multicenter, randomized, tandem-colonoscopy study
  • Thomas K.L. Lui, Dao Viet Hang, Stephen K.K. Tsao, Cynthia K.Y. Hui, Loey Lung Yi Mak, Michael K.L. Ko, Ka Shing Cheung, M.Y. Thian, R. Liang, Vivien W.M. Tsui, Chung Kwong Yeung, L.V. Dao, Wai K. Leung
| Articolo seguente Articolo seguente
  • Automated artificial intelligence scoring systems for the endoscopic assessment of ulcerative colitis: How far are we from clinical application?
  • Alberto Murino, Alessandro Rimondi

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.