Abbonarsi

Toward model-informed precision dosing for tamoxifen: A population-pharmacokinetic model with a continuous CYP2D6 activity scale - 26/02/23

Doi : 10.1016/j.biopha.2023.114369 
Bram C. Agema a, b, , Sanne M. Buijs a, Sebastiaan D.T. Sassen b, c, Thomas E. Mürdter d, e, Matthias Schwab d, f, g, Birgit C.P. Koch b, c, Agnes Jager a, Ron H.N. van Schaik h, Ron H.J. Mathijssen a, Stijn L.W. Koolen a, b
a Dept. of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center; Rotterdam, the Netherlands 
b Dept. of Clinical Pharmacy, Erasmus University Medical Center; Rotterdam, the Netherlands 
c Rotterdam Clinical Pharmacometrics Group; Rotterdam, the Netherlands 
d Margarete Fischer-Bosch-Institute of Clinical Pharmacology; Stuttgart, Germany 
e University of Tübingen; Tübingen, Germany 
f Dept. of Clinical Pharmacology, University Hospital Tübingen; Tübingen, Germany 
g iFIT Cluster of Excellence (EXC2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany 
h Dept. of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands 

Correspondence to: Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.Erasmus MC Cancer Institute, Erasmus University Medical CenterDr. Molewaterplein 40Rotterdam3015 GDthe Netherlands

Abstract

Background

Tamoxifen is important in the adjuvant treatment of breast cancer. A plasma concentration of the active metabolite endoxifen of > 16 nM is associated with a lower risk of breast cancer-recurrence. Since inter-individual variability is high and > 20 % of patients do not reach endoxifen levels > 16 nM with the standard dose tamoxifen, therapeutic drug monitoring is advised. However, ideally, the correct tamoxifen dose should be known prior to start of therapy. Our aim is to develop a population pharmacokinetic (POP-PK) model incorporating a continuous CYP2D6 activity scale to support model informed precision dosing (MIPD) of tamoxifen to determine the optimal tamoxifen starting dose.

Methods

Data from eight different clinical studies were pooled (539 patients, 3661 samples) and used to develop a POP-PK model. In this model, CYP2D6 activity per allele was estimated on a continuous scale. After inclusion of covariates, the model was subsequently validated using an independent external dataset (378 patients). Thereafter, dosing cut-off values for MIPD were determined.

Results

A joint tamoxifen/endoxifen POP-PK model was developed describing the endoxifen formation rate. Using a continuous CYP2D6 activity scale, variability in predicting endoxifen levels was decreased by 37 % compared to using standard CYP2D6 genotype predicted phenotyping. After external validation and determination of dosing cut-off points, MIPD could reduce the proportion of patients with subtherapeutic endoxifen levels at from 22.1 % toward 4.8 %.

Conclusion

Implementing MIPD from the start of tamoxifen treatment with this POP-PK model can reduce the proportion of patients with subtherapeutic endoxifen levels at steady-state to less than 5 %.

Il testo completo di questo articolo è disponibile in PDF.

Graphical Abstract




ga1

Il testo completo di questo articolo è disponibile in PDF.

Highlights

Continuous expression of CYP2D6 activity based on genotype is feasible.
A model-informed dosing strategy for tamoxifen therapy was developed.
The proportion of patients with subtherapeutic levels can be reduced from 21 % to 5 %.
This is the first clinical application for model-informed precision dosing in oncology.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Tamoxifen, Endoxifen, CYP2D6, Pharmacokinetics, Pharmacometrics, Model-informed precision dosing (MIPD)


Mappa


© 2023  The Authors. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 160

Articolo 114369- aprile 2023 Ritorno al numero
Articolo precedente Articolo precedente
  • Treatment of neovascular age-related macular degeneration within 48 h from diagnosis improves long-term functional outcome
  • Raúl Martínez-Castillo, Carmen González-Gallardo, José I. Muñoz-Ávila, Pilar Font, Marta Villalba-González, Indira Stoikow, Ignacio Fernández-Choquet de Isla, Francisco Pugliese, Roberto Anaya-Alaminos, José L. García-Serrano, Francisco Hermoso-Fernández, Fabio Contieri, José E. Muñoz-de-Escalona-Rojas, Lorena Pérez-Fajardo, Mario Blanco-Blanco, Yolanda Jiménez-Gómez, Miguel González-Andrades
| Articolo seguente Articolo seguente
  • Replacement substance P reduces cardiac fibrosis in monkeys with type 2 diabetes
  • Giselle C. Meléndez, Kylie Kavanagh, Nazli Gharraee, Jessica L. Lacy, Kevin H. Goslen, Masha Block, Jordyn Whitfield, Alexander Widiapradja, Scott P. Levick

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2025 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.