Abbonarsi

Acquisition time reduction of diffusion-weighted liver imaging using deep learning image reconstruction - 30/03/23

Doi : 10.1016/j.diii.2022.11.002 
Saif Afat a, , Judith Herrmann a, Haidara Almansour a, Thomas Benkert b, Elisabeth Weiland b, Thomas Hölldobler a, Konstantin Nikolaou a, c, Sebastian Gassenmaier a
a Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, Tuebingen 72076, Germany 
b MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, Erlangen 91052, Germany 
c Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tuebingen, Germany 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Highlights

Deep learning image reconstruction of diffusion-weighted liver imaging including acquisition time reduction of more than 40% is feasible without loss of image quality.
Deep learning image reconstruction of diffusion-weighed liver imaging provides significant reduction of the noise (P < 0.001).
Deep learning image reconstruction of diffusion-weighted liver imaging provides significantly greater signal intensities on ADC map for the liver, spleen, and erector spinae muscles.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Purpose

The purpose of this study was to investigate the impact of deep learning accelerated diffusion-weighted imaging (DWIDL) in 1.5-T liver MRI on image quality, sharpness, and diagnostic confidence.

Materials and methods

One-hundred patients who underwent liver MRI at 1.5-T including DWI with two different b-values (50 and 800 s/mm²) between February and April 2022 were retrospectively included. There were 54 men and 46 women, with a mean age of 59 ± 14 (SD) years (range: 21–88 years). The single average raw data were retrospectively processed using a deep learning (DL) image reconstruction algorithm leading to a simulated acquisition time of 1 min 28 s for DWIDL as compared to 2 min 31 s for standard DWI (DWIStd) via reduction of signal averages. All DWI datasets were reviewed by four radiologists using a Likert scale ranging from 1–4 using the following criteria: noise level, extent of artifacts, sharpness, overall image quality, and diagnostic confidence. Furthermore, quantitative assessment of noise and signal-to-noise ratio (SNR) was performed via regions of interest.

Results

No significant differences were found regarding artifacts and overall image quality (P > 0.05). Noise measurements for the spleen, liver, and erector spinae muscles revealed significantly lower noise for DWIDL versus DWIStd (P < 0.001). SNR measurements in the above-mentioned tissues also showed significantly superior results for DWIDL versus DWIStd for b = 50 s/mm² and ADC maps (all P < 0.001). For b = 800 s/mm², significantly superior results were found for the spleen, right hemiliver, and erector spinae muscles.

Conclusions

DL image reconstruction of liver DWI at 1.5-T is feasible including significant reduction of acquisition time without compromised image quality.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Deep learning, Diffusion-weighted imaging, Image reconstruction, Liver, Magnetic resonance imaging, Signal-to-noise ratio

Abbreviations : ADC, DL, DLR, DWI, DWIStd, DWIDL, GRE, MRI, PI, ROI, SD, SI, SMS, SNR, TA, TSE


Mappa


© 2022  Société française de radiologie. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 104 - N° 4

P. 178-184 - aprile 2023 Ritorno al numero
Articolo precedente Articolo precedente
  • Spectral CT imaging: Technical principles of dual-energy CT and multi-energy photon-counting CT
  • Joël Greffier, Nicolas Villani, Didier Defez, Djamel Dabli, Salim Si-Mohamed
| Articolo seguente Articolo seguente
  • Lung shunt fraction calculations before Y-90 transarterial radioembolization: Comparison of accuracy and clinical significance of planar scintigraphy and SPECT/CT
  • Shamar Young, Siobhan Flanagan, Donna D'Souza, Soorya Todatry, Ranjan Ragulojan, Tina Sanghvi, Jafar Golzarian

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.