Abbonarsi

CTANet: Confidence-Based Threshold Adaption Network for Semi-Supervised Segmentation of Uterine Regions from MR Images for HIFU Treatment - 25/05/23

Doi : 10.1016/j.irbm.2022.100747 
C. Zhang a, b, c, G. Yang a, b, c, F. Li d, Y. Wen e, Y. Yao a, b, c, H. Shu a, b, c, d, , A. Simon c, f, J.-L. Dillenseger c, f, J.-L. Coatrieux c, f
a LIST, Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 210096, China 
b Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, Southeast University, Nanjing, 210096, China 
c Centre de Recherche en Information Biomédicale Sino-Français (CRIBs), Rennes, F-35000, France 
d State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China 
e National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, China 
f Univ Rennes, Inserm, LTSI-UMR1099, Rennes, F-35000, France 

Corresponding author at: Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, Southeast University, Nanjing, 210096, China.Jiangsu Provincial Joint International Research Laboratory of Medical Information ProcessingSoutheast UniversityNanjing210096China

Abstract

Objectives

The accurate preoperative segmentation of the uterus and uterine fibroids from magnetic resonance images (MRI) is an essential step for diagnosis and real-time ultrasound guidance during high-intensity focused ultrasound (HIFU) surgery. Conventional supervised methods are effective techniques for image segmentation. Recently, semi-supervised segmentation approaches have been reported in the literature. One popular technique for semi-supervised methods is to use pseudo-labels to artificially annotate unlabeled data. However, many existing pseudo-label generations rely on a fixed threshold used to generate a confidence map, regardless of the proportion of unlabeled and labeled data.

Materials and Methods

To address this issue, we propose a novel semi-supervised framework called Confidence-based Threshold Adaptation Network (CTANet) to improve the quality of pseudo-labels. Specifically, we propose an online pseudo-labels method to automatically adjust the threshold, producing high-confident unlabeled annotations and boosting segmentation accuracy. To further improve the network's generalization to fit the diversity of different patients, we design a novel mixup strategy by regularizing the network on each layer in the decoder part and introducing a consistency regularization loss between the outputs of two sub-networks in CTANet.

Results

We compare our method with several state-of-the-art semi-supervised segmentation methods on the same uterine fibroids dataset containing 297 patients. The performance is evaluated by the Dice similarity coefficient, the precision, and the recall. The results show that our method outperforms other semi-supervised learning methods. Moreover, for the same training set, our method approaches the segmentation performance of a fully supervised U-Net (100% annotated data) but using 4 times less annotated data (25% annotated data, 75% unannotated data).

Conclusion

Experimental results are provided to illustrate the effectiveness of the proposed semi-supervised approach. The proposed method can contribute to multi-class segmentation of uterine regions from MRI for HIFU treatment.

Il testo completo di questo articolo è disponibile in PDF.

Graphical abstract

We proposed a semi-supervised segmentation network, CTANet, to segment uterine regions from MR Images for HIFU Treatment. It consists of a Pretrained Segmentation Network (PSN) and a Fine Segmentation Network (FSN). The highlights of the network include 1) We adopted a Confidence-based Threshold Adaptation (CTA) module to generate the high-quality pseudo labels without offline selection; 2) The Hidden Mixup loss is used to improve the generalization performance of the model.

Il testo completo di questo articolo è disponibile in PDF.

Highlights

Generating high-confidence maps for pseudo-labels.
Improving the model at different ratios of annotated and unannotated data volumes.
Improving the generalization under different patient data distribution.
The first work focuses on the semi-supervised segmentation of the uterus.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : HIFU therapy, Semi-supervised segmentation, Threshold-adaptation, Uterine fibroids


Mappa


© 2022  AGBM. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 44 - N° 3

Articolo 100747- giugno 2023 Ritorno al numero
Articolo precedente Articolo precedente
  • Editorial Board
| Articolo seguente Articolo seguente
  • Five-Year Prognosis Model of Esophageal Cancer Based on Genetic Algorithm Improved Deep Neural Network
  • J. Sun, Q. Liu, Y. Wang, L. Wang, X. Song, X. Zhao

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.