Abbonarsi

Effect of a deep learning–based automatic upper GI endoscopic reporting system: a randomized crossover study (with video) - 14/07/23

Doi : 10.1016/j.gie.2023.02.025 
Lihui Zhang, MD 1, 2, 3, , Zihua Lu, MD 1, 2, 3, , Liwen Yao, MD 1, 2, 3, , Zehua Dong, MD 1, 2, Wei Zhou, MD 1, 2, 3, Chunping He, MD 1, Renquan Luo, MA 1, 2, 3, Mengjiao Zhang, MD 1, 2, 3, Jing Wang, MD 1, 2, 3, Yanxia Li, MD 1, 2, 3, Yunchao Deng, MD 1, 2, 3, Chenxia Zhang, MD 1, 2, 3, Xun Li, MD 1, 2, 3, Renduo Shang, MD 1, 2, 3, Ming Xu, MD 1, 2, 3, Junxiao Wang, MA 1, 2, 3, Yu Zhao, MD 1, 2, 3, Lianlian Wu, MD 1, 2, 3, Honggang Yu, MD 1, 2, 3,
1 Department of Gastroenterology 
2 Key Laboratory of Hubei Province for Digestive System Disease 
3 Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China 

Reprint request: Professor Honggang Yu, Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Rd, Wuhan, Hubei Province, China.Department of GastroenterologyRenmin Hospital of Wuhan University99 Zhangzhidong RdWuhanHubei ProvinceChina

Abstract

Background and Aims

EGD is essential for GI disorders, and reports are pivotal to facilitating postprocedure diagnosis and treatment. Manual report generation lacks sufficient quality and is labor intensive. We reported and validated an artificial intelligence–based endoscopy automatic reporting system (AI-EARS).

Methods

The AI-EARS was designed for automatic report generation, including real-time image capturing, diagnosis, and textual description. It was developed using multicenter datasets from 8 hospitals in China, including 252,111 images for training, 62,706 images, and 950 videos for testing. Twelve endoscopists and 44 endoscopy procedures were consecutively enrolled to evaluate the effect of the AI-EARS in a multireader, multicase, crossover study. The precision and completeness of the reports were compared between endoscopists using the AI-EARS and conventional reporting systems.

Results

In video validation, the AI-EARS achieved completeness of 98.59% and 99.69% for esophageal and gastric abnormality records, respectively, accuracies of 87.99% and 88.85% for esophageal and gastric lesion location records, and 73.14% and 85.24% for diagnosis. Compared with the conventional reporting systems, the AI-EARS achieved greater completeness (79.03% vs 51.86%, P < .001) and accuracy (64.47% vs 42.81%, P < .001) of the textual description and completeness of the photo-documents of landmarks (92.23% vs 73.69%, P < .001). The mean reporting time for an individual lesion was significantly reduced (80.13 ± 16.12 seconds vs 46.47 ± 11.68 seconds, P < .001) after the AI-EARS assistance.

Conclusions

The AI-EARS showed its efficacy in improving the accuracy and completeness of EGD reports. It might facilitate the generation of complete endoscopy reports and postendoscopy patient management. (Clinical trial registration number: NCT05479253.)

Il testo completo di questo articolo è disponibile in PDF.

Graphical abstract




Il testo completo di questo articolo è disponibile in PDF.

Abbreviations : AI, AI-EARS, BE


Mappa


 DISCLOSURE: All authors disclosed no financial relationships. Researchsupportfor this study was provided by the Innovation Team Project ofHealth Commission of Hubei Province(grantno.WJ202C003, to Honggang Yu).


© 2023  American Society for Gastrointestinal Endoscopy. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 98 - N° 2

P. 181 - agosto 2023 Ritorno al numero
Articolo precedente Articolo precedente
  • Prediction of postendoscopic submucosal dissection esophageal stricture: Do we no longer need a protractor?
  • Seiichiro Abe, Tomohiro Kadota, Yutaka Saito
| Articolo seguente Articolo seguente
  • Diagnostic accuracy and safety of EUS-guided end-cutting fine-needle biopsy needles for tissue sampling of abdominal and mediastinal lymphadenopathies: a prospective multicenter series
  • Silvia Carrara, Daoud Rahal, Kareem Khalaf, Tommy Rizkala, Glenn Koleth, Cristiana Bonifacio, Marta Andreozzi, Benedetto Mangiavillano, Francesco Auriemma, Paola Bossi, Monica Balzarotti, Antonio Facciorusso, Teresa Staiano, Elena Maldi, Marco Spadaccini, Matteo Colombo, Alessandro Fugazza, Roberta Maselli, Cesare Hassan, Alessandro Repici

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.