Abbonarsi

Recent advances in artificial intelligence for cardiac CT: Enhancing diagnosis and prognosis prediction - 29/10/23

Doi : 10.1016/j.diii.2023.06.011 
Fuminari Tatsugami a, , Takeshi Nakaura b, Masahiro Yanagawa c, Shohei Fujita d, Koji Kamagata e, Rintaro Ito f, Mariko Kawamura f, Yasutaka Fushimi g, Daiju Ueda h, Yusuke Matsui i, Akira Yamada j, Noriyuki Fujima k, Tomoyuki Fujioka l, Taiki Nozaki m, Takahiro Tsuboyama c, Kenji Hirata n, Shinji Naganawa f
a Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan 
b Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo Chuo-ku, Kumamoto, 860-8556, Japan 
c Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan 
d Departmen of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan 
e Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan 
f Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan 
g Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan 
h Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan 
i Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan 
j Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan 
k Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital N15, W5, Kita-Ku, Sapporo 060-8638, Japan 
l Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan 
m Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-0016, Japan 
n Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15 Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Highlights

Recent advances in artificial intelligence for cardiac CT have shown great potential for enhancing diagnosis and predicting prognosis.
Artificial intelligence enables faster and more reproducible analysis of cardiac CT examinations.
Insufficient training data for cardiac CT due to limited cases and equipment variability needs external validation using diverse datasets.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Recent advances in artificial intelligence (AI) for cardiac computed tomography (CT) have shown great potential in enhancing diagnosis and prognosis prediction in patients with cardiovascular disease. Deep learning, a type of machine learning, has revolutionized radiology by enabling automatic feature extraction and learning from large datasets, particularly in image-based applications. Thus, AI-driven techniques have enabled a faster analysis of cardiac CT examinations than when they are analyzed by humans, while maintaining reproducibility. However, further research and validation are required to fully assess the diagnostic performance, radiation dose-reduction capabilities, and clinical correctness of these AI-driven techniques in cardiac CT. This review article presents recent advances of AI in the field of cardiac CT, including deep-learning-based image reconstruction, coronary artery motion correction, automatic calcium scoring, automatic epicardial fat measurement, coronary artery stenosis diagnosis, fractional flow reserve prediction, and prognosis prediction, analyzes current limitations of these techniques and discusses future challenges.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Artificial intelligence, Cardiac computed tomography, Cardiac imaging, Deep learning, Machine learning

Abbreviations : AI, AUC, CACS, CAD, CT, CTA, DCNN, DLR, EAT, ECG, FFR, GAN, IR, SR-DLR, U-HRCT


Mappa


© 2023  Société française de radiologie. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 104 - N° 11

P. 521-528 - novembre 2023 Ritorno al numero
Articolo precedente Articolo precedente
  • Can cardiac magnetic resonance imaging be used as a screening tool for iron overload?
  • Farah Cadour, Olivier Ernst, Jean-Nicolas Dacher
| Articolo seguente Articolo seguente
  • Co-registration with subtraction and color-coding or fusion improves the detection of new and growing lesions on follow-up MRI examination of patients with multiple sclerosis
  • Akim Adoum, Leila Mazzolo, Augustin Lecler, Jean-Claude Sadik, Julien Savatovsky, Loïc Duron

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.