Abbonarsi

Can artificial intelligence help decision-making in arthroscopy? Part 1: Use of a standardized analysis protocol improves inter-observer agreement of arthroscopic diagnostic assessments of the long head of biceps tendon in small rotator cuff tears - 29/11/23

Doi : 10.1016/j.otsr.2023.103648 
Rayane Benhenneda a, , Thierry Brouard b, Franck Dordain c, François Gadéa d, Christophe Charousset e, Julien Berhouet a, b
the

Francophone Arthroscopy Society (SFA)f

a Service de Chirurgie Orthopédique, Hôpital Trousseau, Faculté de Médecine, Université de Tours Centre-Val de Loire, CHRU de Tours, Tours, France 
b LIFAT (EA6300), École Polytechnique Universitaire de Tours, 64, avenue Jean-Portalis, 37200 Tours, France 
c Hôpital Privé Saint-Martin, 18, rue des Roquemonts, 14000 Caen, France 
d Centre Ortho-Globe, place du Globe, 83000 Toulon, France 
e Clinique Turin, 9, rue de Turin, 75008 Paris, France 
f 15, rue Ampère, 92500 Rueil-Malmaison, France 

Corresponding author. Service de Chirurgie Orthopédique, Hôpital Trousseau, Faculté de Médecine, université de Tours, CHRU de Tours, avenue de la République, Chambray-lès-Tours, 37044 Tours cedex 9, France.Service de Chirurgie Orthopédique, Hôpital Trousseau, Faculté de Médecine, université de Tours, CHRU de Toursavenue de la République, Chambray-lès-ToursTours cedex 937044France

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Introduction

Injuries of the long head of biceps (LHB) tendon are common but difficult to diagnose clinically or using imaging. Arthroscopy is the preferred means of diagnostic assessment of the LHB, but it often proves challenging. Its reliability and reproducibility have not yet been assessed. Artificial intelligence (AI) could assist in the arthroscopic analysis of the LHB. The main objective of this study was to evaluate the inter-observer agreement for the specific LHB assessment, according to an analysis protocol based on images of interest. The secondary objective was to define a video database, called “ground truth”, intended to create and train AI for the LHB assessment.

Hypothesis

The hypothesis was that the inter-observer agreement analysis, on standardized images, was strong enough to allow the “ground truth” videos to be used as an input database for an AI solution to be used in making arthroscopic LHB diagnoses.

Materials and method

One hundred and ninety-nine sets of standardized arthroscopic images of LHB exploration were evaluated by 3 independent observers. Each had to characterize the healthy or pathological state of the tendon, specifying the type of lesion: partial tear, hourglass hypertrophy, instability, fissure, superior labral anterior posterior lesion (SLAP 2), chondral print and pathological pulley without instability. Inter-observer agreement levels were measured using Cohen's Kappa (K) coefficient and Kappa Accuracy.

Results

The strength of agreement was moderate to strong according to the observers (Kappa 0.54 to 0.7 and KappaAcc from 86 to 92%), when determining the healthy or pathological state of the LHB. When the tendon was pathological, the strength of agreement was moderate to strong when it came to a partial tear (Kappa 0.49 to 0.71 and KappaAcc from 85 to 92%), fissure (Kappa −0.5 to 0.7 and KappaAcc from 36 to 93%) or a SLAP tear (0.54 to 0.88 and KappaAcc from 90 to 97%). It was low for unstable lesion (Kappa 0.04 to 0.25 and KappaAcc from 36 to 88%).

Conclusion

The analysis of the LHB, from arthroscopic images, had a high level of agreement for the diagnosis of its healthy or pathological nature. However, the agreement rate decreased for the diagnosis of rare or dynamic tendon lesions. Thus, AI engineered from human analysis would have the same difficulties if it was limited only to an arthroscopic analysis. The integration of clinical and paraclinical data is necessary to improve the arthroscopic diagnosis of LHB injuries. It also seems to be an essential prerequisite for making a so-called “ground truth” database for building a high-performance AI solution.

Level of evidence

III; inter-observer prospective series.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Shoulder arthroscopy, Artificial intelligence, Inter-observer analysis, Long head of biceps, Rotator cuff


Mappa


© 2023  Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 109 - N° 8S

Articolo 103648- dicembre 2023 Ritorno al numero
Articolo precedente Articolo precedente
  • Tenotomy or tenodesis versus conservation of the long head of the biceps tendon in the repair of isolated supraspinatus tears: A systematic review of the literature
  • Rémy Vigié, Nicolas Bonnevialle, Kevin A. Hao, Julien Berhouet, Christophe Charousset, the Francophone Arthroscopy Society (SFA)
| Articolo seguente Articolo seguente
  • Can artificial intelligence help decision-making in arthroscopy? Part 2: The IA-RTRHO model – a decision-making aid for long head of the biceps diagnoses in small rotator cuff tears
  • Rayane Benhenneda, Thierry Brouard, Christophe Charousset, Julien Berhouet, The Francophone Arthroscopy Society (SFA)

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.