Abbonarsi

External validation of an artificial intelligence solution for the detection of elbow fractures and joint effusions in children - 07/03/24

Doi : 10.1016/j.diii.2023.09.008 
Michel Dupuis a, Léo Delbos b, Alexandra Rouquette b, Catherine Adamsbaum a, c, 1, , Raphaël Veil b, 1
a AP-HP, Bicêtre Hospital, Pediatric Imaging Department, 94270 Le Kremlin Bicêtre, France 
b AP-HP, Bicêtre Hospital, Epidemiology and Public Health Department, 94270 Le Kremlin Bicêtre, France 
c Paris Saclay University, Faculté de Médicine, 94270 Le Kremlin Bicêtre, France 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Highlights

An external validation of an artificial intelligence solution was performed in a real-life context to estimate its performances in the diagnosis of elbow fracture and/or joint effusion.
The senior radiologist's conclusion, blinded to the artificial intelligence solution conclusion, was used as the standard of reference.
The artificial intelligence solution demonstrates a negative predictive value of 92% in the diagnosis of elbow fracture and/or joint effusion in children.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Purpose

The purpose of this study was to conduct an external validation of an artificial intelligence (AI) solution for the detection of elbow fractures and joint effusions using radiographs from a real-life cohort of children.

Materials and methods

This single-center retrospective study was conducted on 758 radiographic sets (1637 images) obtained from consecutive emergency room visits of 712 children (mean age, 7.27 ± 3.97 [standard deviation] years; age range, 7 months and 10 days to 15 years and 10 months), referred for a trauma of the elbow. For each set, fracture and/or effusion detection by eleven senior radiologists (reference standard) and AI solution was recorded. Diagnostic performance of the AI solution was measured via four different approaches: fracture detection (presence/absence of fracture as binary variable), fracture enumeration, fracture localization and lesion detection (fracture and/or a joint effusion used as constructed binary variable).

Results

The sensitivity of the AI solution for each of the four approaches was >89%. Greatest sensitivity of the AI solution was obtained for lesion detection (95.0%; 95% confidence interval: 92.1–96.9). The specificity of the AI solution ranged between 63% (for lesion detection) and 77% (for fracture detection). For all four approaches, the negative predictive values were >92% and the positive predictive values ranged between 54% (for fracture enumeration and localization) and 73% (for lesion detection). Specificity was lower for plastered children for all approaches (P < 0.001).

Conclusion

The AI solution demonstrates high performances for detecting elbow's fracture and/or joint effusion in children. However, in our context of use, 8% of the radiographic sets ruled-out by the algorithm concerned children with a genuine traumatic elbow lesion.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Artificial intelligence, Elbow, Emergency, Pediatric fracture, Radiography

List of abbreviations : CI, FN, FP, PLR, NLR, NPV, PACS, PPV, ROI, TN, TP


Mappa


© 2023  Société française de radiologie. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 105 - N° 3

P. 104-109 - marzo 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • Detection and severity quantification of pulmonary embolism with 3D CT data using an automated deep learning-based artificial solution
  • Aissam Djahnine, Carole Lazarus, Mathieu Lederlin, Sébastien Mulé, Rafael Wiemker, Salim Si-Mohamed, Emilien Jupin-Delevaux, Olivier Nempont, Youssef Skandarani, Mathieu De Craene, Segbedji Goubalan, Caroline Raynaud, Younes Belkouchi, Amira Ben Afia, Clement Fabre, Gilbert Ferretti, Constance De Margerie, Pierre Berge, Renan Liberge, Nicolas Elbaz, Maxime Blain, Pierre-Yves Brillet, Guillaume Chassagnon, Farah Cadour, Caroline Caramella, Mostafa El Hajjam, Samia Boussouar, Joya Hadchiti, Xavier Fablet, Antoine Khalil, Hugues Talbot, Alain Luciani, Nathalie Lassau, Loic Boussel
| Articolo seguente Articolo seguente
  • Comparison of two deep-learning image reconstruction algorithms on cardiac CT images: A phantom study
  • Joël Greffier, Maxime Pastor, Salim Si-Mohamed, Cynthia Goutain-Majorel, Aude Peudon-Balas, Mourad Zoubir Bensalah, Julien Frandon, Jean-Paul Beregi, Djamel Dabli

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.