Abbonarsi

Construction and validation of classification models for predicting the response to concurrent chemo-radiotherapy of patients with esophageal squamous cell carcinoma based on multi-omics data - 28/03/24

Doi : 10.1016/j.clinre.2024.102318 
Zhi-Mao Li a, b, 1, Wei Liu c, 1, Xu-Li Chen d, Wen-Zhi Wu a, Xiu-E. Xu a, Man-Yu Chu a, Shuai-Xia Yu a, En-Min Li e, He-Cheng Huang b, , Li-Yan Xu a,
a Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China 
b Department of Radiation Oncology, Shantou Central Hospital, Shantou 515041, Guangdong, PR China 
c College of Science, Heilongjiang Institute of Technology, Harbin 150050, Heilongjiang, PR China 
d Department of Clinical Laboratory Medicine, Shantou Central Hospital, Shantou 515041, Guangdong, PR China 
e The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China 

Corresponding authors: Institute of Oncologic Pathology, Shantou University Medical College, No. 22, Xinling Road, Shantou 515041, Guangdong, PR China.Institute of Oncologic PathologyShantou University Medical CollegeNo. 22, Xinling RoadShantouGuangdong515041PR China

Highlights

Clinical, serum proteomic, and radiomic data were integrated to develop classification models.
The models can accurately predict CCRT response of ESCC patients.
Nomogram models integrating multi-omics data achieved the best prediction performance.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Background

Concurrent chemo-radiotherapy (CCRT) is the preferred non-surgical treatment for patients with locally advanced esophageal squamous cell carcinoma (ESCC). Unfortunately, some patients respond poorly, which leads to inappropriate or excessive treatment and affects patient survival. To accurately predict the response of ESCC patients to CCRT, we developed classification models based on the clinical, serum proteomic and radiomic data.

Methods

A total of 138 ESCC patients receiving CCRT were enrolled in this study and randomly split into a training cohort (n = 92) and a test cohort (n = 46). All patients were classified into either complete response (CR) or incomplete response (non-CR) groups according to RECIST1.1. Radiomic features were extracted by 3Dslicer. Serum proteomic data was obtained by Olink proximity extension assay. The logistic regression model with elastic-net penalty and the R-package “rms” v6.2–0 were applied to construct classification and nomogram models, respectively. The area under the receiver operating characteristic curves (AUC) was used to evaluate the predictive performance of the models.

Results

Seven classification models based on multi-omics data were constructed, of which Model-COR, which integrates five clinical, five serum proteomic, and seven radiomic features, achieved the best predictive performance on the test cohort (AUC = 0.8357, 95 % CI: 0.7158–0.9556). Meanwhile, patients predicted to be CR by Model-COR showed significantly longer overall survival than those predicted to be non-CR in both cohorts (Log-rank P = 0.0014 and 0.027, respectively). Furthermore, two nomogram models based on multi-omics data also performed well in predicting response to CCRT (AUC = 0.8398 and 0.8483, respectively).

Conclusion

We developed and validated a multi-omics based classification model and two nomogram models for predicting the response of ESCC patients to CCRT, which achieved the best prediction performance by integrating clinical, serum Olink proteomic, and radiomic data. These models could be useful for personalized treatment decisions and more precise clinical radiotherapy and chemotherapy for ESCC patients.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Concurrent chemo-radiotherapy, Esophageal squamous cell carcinoma, Olink proximity extension assay, Radiomics, Multi-omics, Classification model

Abbreviations : ESCC, CCRT, CR, non-CR, PEA, AJCC, RECIST, PR, SD, PD, ROIs, AUC


Mappa


© 2024  Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 48 - N° 4

Articolo 102318- aprile 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • Chronic gastrointestinal immune-related adverse events in patients exposed to immune checkpoint inhibitors
  • Marine Jeay, Franck Carbonnel, Caroline Robert, Charlotte Mussini, Christophe Bellanger, Antoine Meyer
| Articolo seguente Articolo seguente
  • Gastric adenocarcinoma of fundic gland (chief cell predominant) type
  • Dong-Ge Han, Ke Wang, Wei Liu

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.