Abbonarsi

Impact of the vaccination against SARS-CoV-2 campaign on disproportionality indicator from the WHO pharmacovigilance database: A competition bias study from case/non-case analysis - 07/04/24

Doi : 10.1016/j.therap.2024.03.002 
Francis Adjaï a, Dorine Fournier a, Charles Dolladille b, c, Bénédicte Lebrun-Vignes a, b, Kevin Bihan a,
a Department of Pharmacology, Regional Pharmacovigilance Center Pitié-Saint-Antoine, Pitié-Salpêtrière Hospital, 75000 Paris, France 
b Inserm, UMR ICAN 1166, CIC-1421, Department of Pharmacology, Faculty of Medicine, Pharmacovigilance Unit, Pitié-Salpêtrière Hospital, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Universités, UPMC University Paris 06, AP–HP, 75000 Paris, France 
c Department of Pharmacology, Pharmaco-Epidemiology Unit, Caen University Hospital, 14000 Caen, France 

Corresponding author. Pharmacology Department, Pitié-Salpêtrière Hospital, 47-83, boulevard de l’Hôpital, 75013 Paris, France.Pharmacology Department, Pitié-Salpêtrière Hospital47-83, boulevard de l’HôpitalParis75013France

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

In corso di stampa. Prove corrette dall'autore. Disponibile online dal Sunday 07 April 2024

Summary

Introduction

The coronavirus disease 2019 (COVID-19) vaccination campaign has resulted in numerous pharmacovigilance's safety reports which were recorded in the World Health Organization (WHO) pharmacovigilance database (VigiBase) and represent in July 2022 more than 10% of cases recorded. The information component (IC) is a statistical disproportionality measure based on the observed and expected numbers of case reports. A positive value of the lower endpoint of a 95% credibility interval for the information component (IC0.25) suggests a possible causal relationship between the drug and the adverse reaction. This study aimed to evaluate the impact of the wave of COVID-19 vaccines safety declarations on IC0.25 from Vigilyze and thus illustrate with a concrete example the competition bias.

Methods

We arbitrarily selected 21 adverse drug reactions using Medical Dictionary for Regulatory Activities (MedDRA) preferred terms (PTs), divided in two types: PTs known to be related to COVID-19 vaccines (“expected”) and others (type “unexpected”). Data were extracted from VigiLyze. We created two groups: V+ (the full database, including COVID-19 vaccines reports) and V− (the same extraction without COVID-19 vaccine reports). IC0.25 was recomputed for the group V− and we compared the positive signal evolution in the two settings of selection (V+ and V− groups).

Results

The number of positive potential signals was significantly different in the groups V+ and V− for IC0.25. We observed that most of the “unexpected” PTs lost potential signal after the withdrawal of COVID-19 reports. On the contrary, the majority of ‘expected’ PTs had potential new signals after the withdrawal of COVID-19 reports.

Discussion

This study is one of the first to evaluate the effect of COVID-19 vaccines reporting on Automated Signal Detection of Pharmacovigilance. In this study, we observed that a wave of pharmacovigilance reporting can affect disproportionality estimators such as IC0.25 and then have an impact on automated signal detection; some signals disappear (almost with all PTs related to COVID-19 vaccines) and others appear (mostly with PTs not related to COVID-19 vaccines), illustrating the competition bias.

Conclusion

We show that a health crisis involving a change in drug use can affect adverse drug reactions reporting and pharmacovigilance databases, leading to competition bias and a change in the disproportionality analyses. For health professionals who use quantitative disproportionality analysis, it is important not only to use the crude values of indicators but also the kind of PTs and the evolution of the signal over time (take into account major events such as crises).

Il testo completo di questo articolo è disponibile in PDF.

Keywords : COVID-19 vaccines, Pharmacovigilance, Adverse drug reaction, Disproportionality analysis, Vigibase


Mappa


© 2024  The Authors. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.