Abbonarsi

Multiparametric MRI model to predict molecular subtypes of breast cancer using Shapley additive explanations interpretability analysis - 02/05/24

Doi : 10.1016/j.diii.2024.01.004 
Yao Huang a, b, 1, Xiaoxia Wang b, 1, Ying Cao a, b, Mengfei Li b, Lan Li b, Huifang Chen b, Sun Tang b, Xiaosong Lan b, Fujie Jiang b, Jiuquan Zhang b,
a School of Medicine, Chongqing University, Chongqing, 400030, China 
b Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), 400030, Chongqing, China 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Highlights

Lower iAUC, higher kurtosis, lower D*, and lower kurtosis are characteristic of luminal A, luminal B, triple-negative breast cancer, and HER2-enriched breast cancer subtypes, respectively.
Multiparametric model outperforms semantic model in accurately predicting the molecular subtypes of breast cancer.
SHapley Additive exPlanations (SHAP) analysis can enhance the transparency and usability of the model for predicting molecular subtypes of breast cancer.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Purpose

The purpose of this study was to assess the predictive performance of multiparametric magnetic resonance imaging (MRI) for molecular subtypes and interpret features using SHapley Additive exPlanations (SHAP) analysis.

Material and methods

Patients with breast cancer who underwent pre-treatment MRI (including ultrafast dynamic contrast-enhanced MRI, magnetic resonance spectroscopy, diffusion kurtosis imaging and intravoxel incoherent motion) were recruited between February 2019 and January 2022. Thirteen semantic and thirteen multiparametric features were collected and the key features were selected to develop machine-learning models for predicting molecular subtypes of breast cancers (luminal A, luminal B, triple-negative and HER2-enriched) by using stepwise logistic regression. Semantic model and multiparametric model were built and compared based on five machine-learning classifiers. Model decision-making was interpreted using SHAP analysis.

Results

A total of 188 women (mean age, 53 ± 11 [standard deviation] years; age range: 25–75 years) were enrolled and further divided into training cohort (131 women) and validation cohort (57 women). XGBoost demonstrated good predictive performance among five machine-learning classifiers. Within the validation cohort, the areas under the receiver operating characteristic curves (AUCs) for the semantic models ranged from 0.693 (95% confidence interval [CI]: 0.478–0.839) for HER2-enriched subtype to 0.764 (95% CI: 0.681–0.908) for luminal A subtype, inferior to multiparametric models that yielded AUCs ranging from 0.771 (95% CI: 0.630–0.888) for HER2-enriched subtype to 0.857 (95% CI: 0.717–0.957) for triple-negative subtype. The AUCs between the semantic and the multiparametric models did not show significant differences (P range: 0.217–0.640). SHAP analysis revealed that lower iAUC, higher kurtosis, lower D*, and lower kurtosis were distinctive features for luminal A, luminal B, triple-negative breast cancer, and HER2-enriched subtypes, respectively.

Conclusion

Multiparametric MRI is superior to semantic models to effectively predict the molecular subtypes of breast cancer.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Breast neoplasms, Interpretability analysis, Magnetic resonance imaging, Molecular subtypes, Multiparametric imaging

Abbreviations : AUC, BI-RADS, BPE, DCE, DKI, ER, FGT, HER2, iAUC, ICC, IVIM, MD, MRI, MRS, MS, PEI, PR, ROC, ROI, SD, SHAP, TIC, TNBC, TTP, XGBoost


Mappa


© 2024  Société française de radiologie. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 105 - N° 5

P. 191-205 - maggio 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • Lung fibrosis is uncommon in primary Sjögren's disease: A retrospective analysis of computed tomography features in 77 patients
  • Grégoire Martin de Frémont, Alessandra Monaya, Guillaume Chassagnon, Samir Bouam, Emma Canniff, Pascal Cohen, Marion Casadevall, Luc Mouthon, Véronique Le Guern, Marie-Pierre Revel
| Articolo seguente Articolo seguente
  • Anomalous right coronary artery originating from the pulmonary artery
  • Taha M. Ahmed, Elliot K. Fishman

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.