Abbonarsi

Differentiation between adrenocortical carcinoma and lipid-poor adrenal adenoma using a multiparametric MRI-based diagnostic algorithm - 28/09/24

Doi : 10.1016/j.diii.2024.03.005 
Carmelia Oloukoi a, b, Anthony Dohan a, b, c, Martin Gaillard b, c, d, Christine Hoeffel e, Lionel Groussin-Rouiller b, c, f, Jérome Bertherat b, c, f, Anne Jouinot b, c, f, Guillaume Assié b, c, f, David Fuks b, d, Mathilde Sibony b, g, Philippe Soyer a, b, Anne-Sophie Jannot h, i, Maxime Barat a, b, c,
a Department of Radiology, Hôpital Cochin, AP-HP, 75014 Paris, France 
b Université Paris Cité, Faculté de Médecine, 75006 Paris, France 
c Génomique et Signalisation des Tumeurs Endocrines, Institut Cochin, INSERM U 1016, CNRS UMR8104, Université Paris Cité, 75014 Paris, France 
d Department of Pancreatic and Endocrine Surgery, Hôpital Cochin, AP-HP, 75014 Paris, France 
e Department of Radiology, Hôpital Robert Debré, CRESTIC, URCA, 51000 Reims, France 
f Department of Endocrinology, Hôpital Cochin, AP-HP, 75014 Paris, France 
g Department of Pathology, Hôpital Cochin, AP-HP, 75014 Paris, France 
h AP-HP.Centre- Université Paris Cité, Hôpital Européen Georges Pompidou, Medical Informatics, Biostatistics and Public Health Department, 75015, Paris, France 
i INSERM, UMR_S1138, Cordeliers Research Center, Université Paris Cité, 75006 Paris, France 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Highlights

A diagnostic algorithm combining signal intensity index on chemical-shift imaging and apparent diffusion coefficient value on diffusion-weighted imaging helps discriminate between lipid-poor adrenal adenoma and adrenocortical carcinoma with 75% accuracy.
Best sensitivity (96%) for the diagnosis of adrenocortical carcinoma vs. lipid-poor adrenal adenoma is obtained using the association of the diagnostic algorithm with adrenal lesion size.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Purpose

The purpose of this study was to evaluate the capabilities of multiparametric magnetic resonance imaging (MRI) in differentiating between lipid-poor adrenal adenoma (LPAA) and adrenocortical carcinoma (ACC).

Materials and methods

Patients of two centers who underwent surgical resection of LPAA or ACC after multiparametric MRI were retrospectively included. A training cohort was used to build a diagnostic algorithm obtained through recursive partitioning based on multiparametric MRI variables, including apparent diffusion coefficient and chemical shift signal ratio (i.e., tumor signal intensity index). The diagnostic performances of the multiparametric MRI-based algorithm were evaluated using a validation cohort, alone first and then in association with adrenal tumor size using a cut-off of 4 cm. Performances of the diagnostic algorithm for the diagnosis of ACC vs. LPAA were calculated using pathology as the reference standard.

Results

Fifty-four patients (27 with LPAA and 27 with ACC; 37 women; mean age, 48.5 ± 13.3 [standard deviation (SD)] years) were used as the training cohort and 61 patients (24 with LPAA and 37 with ACC; 47 women; mean age, 49 ± 11.7 [SD] years) were used as the validation cohort. In the validation cohort, the diagnostic algorithm yielded best accuracy for the diagnosis of ACC vs. LPAA (75%; 46/61; 95% CI: 55–88) when used without lesion size. Best sensitivity was obtained with the association of the diagnostic algorithm with tumor size (96%; 23/24; 95% CI: 80–99). Best specificity was obtained with the diagnostic algorithm used alone (76%; 28/37; 95% CI: 60–87).

Conclusion

A multiparametric MRI-based diagnostic algorithm that includes apparent diffusion coefficient and tumor signal intensity index helps discriminate between ACC and LPAA with high degrees of specificity and accuracy. The association of the multiparametric MRI-based diagnostic algorithm with adrenal lesion size helps maximize the sensitivity of multiparametric MRI for the diagnosis of ACC.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Adrenal gland disease, Adrenal gland neoplasm, Adrenocortical carcinoma, Diagnostic algorithm, Magnetic resonance imaging

List of abbreviations : AA, ACC, ADC, AL, ALR, APW, ASR, CI, CT, DWI, FS, GBCA, HASTE, HU, IP, IQR, LPAA, MRI, OP, PET, ROI, RPW, SD, SI, SII, TSE


Mappa


© 2024  Pubblicato da Elsevier Masson SAS.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 105 - N° 10

P. 355-363 - ottobre 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • The role of MR imaging in ovarian tumor risk stratification
  • Laure Fournier
| Articolo seguente Articolo seguente
  • Ultra-low dose chest CT for the diagnosis of pulmonary arteriovenous malformation in patients with hereditary hemorrhagic telangiectasia
  • Jean-Etienne Delpon, Joel Greffier, Hugo Lacombe, Apolline Barbe, Morgane Bouin, Fabien De Oliveira, Adeline Mansuy, Laura Delagrange, Anne-Emmanuelle Fargeton, Jean-Paul Beregi, Vincent Cottin, Sophie Dupuis-Girod, Salim Aymeric Si-Mohamed

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.