Abbonarsi

Radiation dose reduction and image quality improvement with ultra-high resolution temporal bone CT using deep learning-based reconstruction: An anatomical study - 28/09/24

Doi : 10.1016/j.diii.2024.05.001 
Fatma Boubaker a, Ulysse Puel a, b, c, Michael Eliezer d, Gabriela Hossu b, c, Bouchra Assabah e, Karim Haioun f, Alain Blum a, b, c, Pedro Augusto Gondim-Teixeira a, b, c, Cécile Parietti-Winkler g, Romain Gillet a, b, c,
a Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France 
b Université de Lorraine, INSERM, IADI, 54000, Nancy, France 
c Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000, Nancy, France 
d Department of Radiology, Hôpital des 15-20, 75571 Paris, France 
e Department of Anatomy, University Hospital Center of Nancy, 54000, Nancy, France 
f Canon Medical Systems Corporation, Kawasaki-shi, 212-0015 Kanagawa, Japan 
g ENT Surgery Department, Central Hospital, University Hospital Center of Nancy, 54000 Nancy, France 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Highlights

Ultra-high-resolution CT of the temporal bone with deep learning reconstruction can be performed with up to a tenfold reduction in radiation dose by comparison with conventional high-resolution CT while maintaining image quality.
The use of deep learning with ultra-high-resolution CT at the same radiation dose as conventional high-resolution CT allows a marked increase in image quality of the middle and inner ear.
The use of deep learning with ultra-high-resolution CT helps achieve more complete bony coverage of the facial nerve and better representation of the cochlear spiral osseous lamina compared to hybrid iterative reconstruction algorithms.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Purpose

The purpose of this study was to evaluate the achievable radiation dose reduction of an ultra-high resolution computed tomography (UHR-CT) scanner using deep learning reconstruction (DLR) while maintaining temporal bone image quality equal to or better than high-resolution CT (HR-CT).

Materials and methods

UHR-CT acquisitions were performed with variable tube voltages and currents at eight different dose levels (volumic CT dose index [CTDIvol] range: 4.6–79 mGy), 10242 matrix, and 0.25 mm slice thickness and reconstructed using DLR and hybrid iterative reconstruction (HIR) algorithms. HR-CT images were acquired using a standard protocol (120 kV/220 mAs; CTDI vol, 54.2 mGy, 5122 matrix, and 0.5 mm slice thickness). Two radiologists rated the image quality of seven structures using a five point confidence scale on six cadaveric temporal bone CTs. A global image quality score was obtained for each CT protocol by summing the image quality scores of all structures.

Results

With DLR, UHR-CT at 120 kV/220 mAs (CTDIvol, 50.9 mGy) and 140 kV/220 mAs (CTDIvol, 79 mGy) received the highest global image quality scores (4.88 ± 0.32 [standard deviation (SD)] [range: 4–5] and 4.85 ± 0.35 [range: 4–5], respectively; P = 0.31), while HR-CT at 120 kV/220 mAs and UHR-CT at 120 kV/20 mAs received the lowest (i.e., 3.14 ± 0.75 [SD] [range: 2–5] and 2.97 ± 0.86 [SD] [range: 1–5], respectively; P = 0.14). All the DLR protocols had better image quality scores than HR-CT with HIR.

Conclusion

UHR-CT with DLR can be performed with up to a tenfold reduction in radiation dose compared to HR-CT with HIR while maintaining or improving image quality.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Computed tomography, Deep learning, Image enhancement, Image reconstruction, Temporal bone

Abbreviations : AiCE, CT, CTDI, DLR, HR-CT, HIR, HU, SD, UHR-CT


Mappa


© 2024  The Author(s). Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 105 - N° 10

P. 371-378 - ottobre 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • Ultra-low dose chest CT for the diagnosis of pulmonary arteriovenous malformation in patients with hereditary hemorrhagic telangiectasia
  • Jean-Etienne Delpon, Joel Greffier, Hugo Lacombe, Apolline Barbe, Morgane Bouin, Fabien De Oliveira, Adeline Mansuy, Laura Delagrange, Anne-Emmanuelle Fargeton, Jean-Paul Beregi, Vincent Cottin, Sophie Dupuis-Girod, Salim Aymeric Si-Mohamed
| Articolo seguente Articolo seguente
  • Abdominal image quality and dose reduction with energy-integrating or photon-counting detectors dual-source CT: A phantom study
  • Joël Greffier, Djamel Dabli, Sebastian Faby, Maxime Pastor, Cédric Croisille, Fabien de Oliveira, Julien Erath, Jean Paul Beregi

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.