Abbonarsi

Using machine learning to predict bacteremia in urgent care patients on the basis of triage data and laboratory results - 28/10/24

Doi : 10.1016/j.ajem.2024.08.045 
Chung-Ping Chiu a , Hsin-Hung Chou b , Peng-Chan Lin c , Ching-Chi Lee d, e, , Sun-Yuan Hsieh a, b, f, g, h, ⁎⁎
a Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 70101, Taiwan 
b Department of Computer Science and Information Engineering, National Chi Nan University, Nantou 545301, Taiwan 
c Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan 
d Clinical Medicine Research Centre, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan 
e Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan 
f Institute of Manufacturing Information and Systems, National Cheng Kung University. Tainan. 70101, Taiwan 
g Institute of information Science, Academia Sinica, Taipei, 115, Taiwan 
h Research Center for Information Technology Innovation. Academia Sinica, Taipei, 115. Taiwan 

Corresponding author at: Clinical Medicine Research Center, National Cheng Kung University Hospital, No. 138, Sheng Li Road, 70403 Tainan, Taiwan.Clinical Medicine Research CenterNational Cheng Kung University HospitalNo. 138, Sheng Li RoadTainan70403Taiwan⁎⁎Corresponding author at: Department of Computer Science and Information Engineering, National Cheng Kung, University, No. 1, Dasyue Rd, East District, Tainan city, Taiwan.Department of Computer Science and Information EngineeringNational Cheng Kung, UniversityNo. 1, Dasyue Rd, East DistrictTainan cityTaiwan

Abstract

Background

Despite advancements in antimicrobial therapies, bacteremia remains a life-threatening condition. Appropriate antimicrobials must be promptly administered to ensure patient survival. However, diagnosing bacteremia based on blood cultures is time-consuming and not something emergency department (ED) personnel are routinely trained to do.

Methods

This retrospective cohort study developed several machine learning (ML) models to predict bacteremia in adults initially presenting with fever or hypothermia, comprising logistic regression, random forest, extreme gradient boosting, support vector machine, k-nearest neighbor, multilayer perceptron, and ensemble models. Random oversampling and synthetic minority oversampling techniques were adopted to balance the dataset. The variables included demographic characteristics, comorbidities, immunocompromised status, clinical characteristics, subjective symptoms reported during ED triage, and laboratory data. The study outcome was an episode of bacteremia.

Results

Of the 5063 patients with initial fever or hypothermia from whom blood cultures were obtained, 128 (2.5 %) were diagnosed with bacteremia. We combined 36 selected variables and 10 symptoms subjectively reported by patients into features for analysis in our models. The ensemble model outperformed other models, with an area under the receiver operating characteristic curve (AUROC) of 0.930 and an F1-score of 0.735. The AUROC of all models was higher than 0.80.

Conclusion

The ML models developed effectively predicted bacteremia among febrile or hypothermic patients in the ED, with all models demonstrating high AUROC values and rapid processing times. The findings suggest that ED clinicians can effectively utilize ML techniques to develop predictive models for addressing clinical challenges.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Artificial intelligence, Machine learning, Emergency department, Predictive model, Bacteremia


Mappa


© 2024  Pubblicato da Elsevier Masson SAS.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 85

P. 80-85 - novembre 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • Clinical outcomes of challenging out-of-hospital hypothermia management: A retrospective assessment of DOKEI protocol
  • Kazue Oshiro, Takashi Matsumoto, Takeshi Nawa, Takayuki Sakuta, Tomikazu Murakami
| Articolo seguente Articolo seguente
  • Comparison of initial adenosine dose conversion rate for supraventricular tachycardia in the emergency department
  • Nichole Krug, Paige Baize, Stephanie Barre, Robert Barnes, Katherine Weigartz

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.