Abbonarsi

The clinical prognostic risk stratification system for HIV infected hepatocellular carcinoma - 02/11/24

Doi : 10.1016/j.clinre.2024.102479 
Yifan Chen a, b, 1, Han Zhao c, 1, Yao Wang b, 1, Bo Liu c, Zhimin Chen c, Yu Tao a, Yang Xun d, Hua Yang d, Rongqiu Liu a, Lizhi Feng c, Xinhua Liu c, Hengjing Li c, Sibo Wang c, Baolin Liao e, Dong Zhao f, , Haolan He c, , Hua You a, b,
a Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China 
b Department of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China 
c Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China 
d Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, China 
e Guangzhou Medical Research Institute of Infectious Diseases, Hepatology Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China 
f Department of Liver Surgery and Organ Transplantation Center, Shenzhen Third People's Hospital, Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China 

Corresponding author at: Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China.Laboratory for Excellence in Systems Biomedicine of Pediatric OncologyDepartment of Pediatric Hematology and OncologyChongqing Key Laboratory of Pediatric Metabolism and Inflammatory DiseasesMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and DisordersChildren's Hospital of Chongqing Medical UniversityChongqing401122China⁎⁎Corresponding authors.

Abstract

Background

Patients with human immunodeficiency virus (HIV) are more susceptible to liver cancer because of their compromised immune system. There is no specific prognostic model for HIV-infected hepatocellular carcinoma (HCC) patients.

Methods

Clinical data of 85 patients with HIV-infected HCC was divided into a 7:3 ratio for training and internal validation sets, while the data of 23 patients with HIV-infected HCC was served as the external validation set. Data of 275 HIV-negative HCC patients was considered as external HIV-negative validation set. Variables associated with overall survival (OS) in the training set were used to develop the HIV-infected HCC prognosis (HIHP) model. The model was tested in the internal and external validation sets. The predictive accuracy of the model was assessed with conventional HIV-negative HCC prognostic scoring systems.

Results

In the training set, variables independently associated with OS in multivariable analysis were organ involvement and tumor number. The HIHP model demonstrated a significant association with OS in the training set, with a median OS of 13 months for low risk, 7 months for medium risk, and 3 months for high risk (p < 0.001). The HIHP model showed a significant association with OS, and exhibited greater discriminative abilities compared to conventional HIV-negative HCC prognostic models both in the internal and external validation sets. In the external HIV-negative validation set, the HIHP model did not show better discrimination than conventional HIV-negative HCC scores.

Conclusion

The new model presented in the work provided a more accurate prognostic prediction of OS in HIV-infected HCC patients. However, the model is not applicable to patients with HIV-negative HCC.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Human immunodeficiency virus-infected hepatocellular carcinoma, Prognostic model, Risk stratification, Organ involvement, Tumor number


Mappa


© 2024  Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 48 - N° 10

Articolo 102479- dicembre 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • Contents
| Articolo seguente Articolo seguente
  • ZNF143-mediated upregulation of MEX3C promotes hepatocellular carcinoma progression
  • Lili Zhang, Nan Dang, Jiongyi Wang, Wenying Zhang, Xiaohua Hu, Bin Jiang, Dan Zhao, Feng Liu, Haihua Yuan

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.