Abbonarsi

Appropriate trust in artificial intelligence for the optical diagnosis of colorectal polyps: the role of human/artificial intelligence interaction - 04/12/24

Doi : 10.1016/j.gie.2024.06.029 
Quirine E.W. van der Zander, MD 1, 2, , Rachel Roumans, MScEE 3, Carolus H.J. Kusters, MScEE 4, Nikoo Dehghani, MScEE 4, Ad A.M. Masclee, Prof, MD 1, Peter H.N. de With, Prof, Mathematics and Econometrics 4, Fons van der Sommen, Assistant prof, EE 4, Chris C.P. Snijders, Prof, EE 3, Erik J. Schoon, Prof, MD 1, 5
1 Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, The Netherlands 
2 GROW, School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands 
3 Human-Technology Interaction, Eindhoven University of Technology, Eindhoven, The Netherlands 
4 Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven The Netherlands 
5 Division of Gastroenterology and Hepatology, Catharina Hospital Eindhoven, Eindhoven, The Netherlands 

Reprint requests: Quirine E. W. van der Zander, MD, Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Postbus 5800, 6202 AZ Maastricht, The Netherlands.Department of Gastroenterology and HepatologyMaastricht University Medical CenterPostbus 5800Maastricht6202 AZThe Netherlands

Abstract

Background and Aims

Computer-aided diagnosis (CADx) for the optical diagnosis of colorectal polyps is thoroughly investigated. However, studies on human–artificial intelligence interaction are lacking. Our aim was to investigate endoscopists’ trust in CADx by evaluating whether communicating a calibrated algorithm confidence score improved trust.

Methods

Endoscopists optically diagnosed 60 colorectal polyps. Initially, endoscopists diagnosed the polyps without CADx assistance (initial diagnosis). Immediately afterward, the same polyp was again shown with a CADx prediction: either only a prediction (benign or premalignant) or a prediction accompanied by a calibrated confidence score (0-100). A confidence score of 0 indicated a benign prediction, 100 a (pre)malignant prediction. In half of the polyps, CADx was mandatory, and for the other half, CADx was optional. After reviewing the CADx prediction, endoscopists made a final diagnosis. Histopathology was used as the reference standard. Endoscopists’ trust in CADx was measured as CADx prediction utilization: the willingness to follow CADx predictions when the endoscopists initially disagreed with the CADx prediction.

Results

Twenty-three endoscopists participated. Presenting CADx predictions increased the endoscopists’ diagnostic accuracy (69.3% initial vs 76.6% final diagnosis, P < .001). The CADx prediction was used in 36.5% (n = 183 of 501) of disagreements. Adding a confidence score led to lower CADx prediction utilization, except when the confidence score surpassed 60. Mandatory CADx decreased CADx prediction utilization compared to optional CADx. Appropriate trust—using correct or disregarding incorrect CADx predictions—was 48.7% (n = 244 of 501).

Conclusions

Appropriate trust was common, and CADx prediction utilization was highest for the optional CADx without confidence scores. These results express the importance of a better understanding of human–artificial intelligence interaction.

Il testo completo di questo articolo è disponibile in PDF.

Graphical abstract




Il testo completo di questo articolo è disponibile in PDF.

Abbreviations : AI, CADx, HDWL, NPV, SD, SSL


Mappa


 Chris C. P. Snijders and Erik J. Schoon contributed equally to this work.


© 2024  American Society for Gastrointestinal Endoscopy. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 100 - N° 6

P. 1070 - dicembre 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • Development of an algorithm combining blood-based biomarkers, fecal immunochemical test, and age for population-based colorectal cancer screening
  • Mathias M. Petersen, Jakob Kleif, Jason Liggett, Morten Rasmussen, Lars N. Jørgensen, Jesper Vilandt, Jakob B. Seidelin, Carla M.T. Beertsen, Annemieke C. Heijboer, Claudia Jaensch, Peter Bondeven, Kåre A. Gotschalck, Uffe S. Løve, Susan H. Gawel, Berit Andersen, Ib J. Christensen, Eric Mayer, Gerard J. Davis, Christina Therkildsen
| Articolo seguente Articolo seguente
  • Comparing underwater endoscopic submucosal dissection and conventional endoscopic submucosal dissection for large laterally spreading tumor: a randomized controlled trial (with video)
  • Chang Kyo Oh, Hwe Hoon Chung, Jae Keun Park, Jiyoon Jung, Hee Yeon Lee, Yu Jin Kim, Jin Bae Kim

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.