Abbonarsi

A multivariable disease-specific model enhances prognostication beyond current Merkel cell carcinoma staging: An international cohort study of 10,958 patients - 19/02/25

Doi : 10.1016/j.jaad.2024.10.096 
Tom W. Andrew, MBChB, MSc, MRCS a, b, , Sophie Erdmann, MBChB, BSc b, Mogdad Alrawi, MBChB, MSc b, Ruth Plummer, BMBCh, DPhil a, c, Sophia Z. Shalhout, PhD d, e, Vern Sondak, MD f, g, Isaac Brownell, MD, PhD h, Penny E. Lovat, MPhil, PhD a, Aidan Rose, BSc Hons, MBChB, PhD a, b
a Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK 
b Department of Plastic and Reconstructive Surgery, Royal Victoria Infirmary, Newcastle Upon Tyne Hospital NHS Foundation Trust (NuTH), Newcastle upon Tyne, UK 
c Department of Oncology, Newcastle University and Northern Centre for Cancer Care, Newcastle upon Tyne, UK 
d Division of Surgical Oncology, Department of Otolaryngology-Head and Neck Surgery, Mike Toth Head and Neck Cancer Research Center, Mass Eye and Ear, Boston, Massachusetts 
e Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts 
f Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida 
g Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida 
h Dermatology Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland 

Correspondence to: Tom W. Andrew, MBChB, MSc, MRCS, Translation and Clinical Research Institute, Newcastle University Centre for Cancer, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.Translation and Clinical Research InstituteNewcastle University Centre for CancerFramlington PlaceNewcastle upon TyneNE2 4HHUK

Abstract

Background

Merkel cell carcinoma (MCC) is a highly aggressive cutaneous malignancy for which accurate prognostication is necessary to support clinical management.

Objective

(1) To determine which survival endpoint—disease-specific death (DSD) or overall survival (OS)—was better stratified by MCC American Joint Cancer Committee eighth edition staging. (2) To develop a multivariable model for enhanced MCC survival predictions.

Methods

A retrospective analysis of 10,958 histologically confirmed MCC patients between January 2000 and December 2020 was performed. Patient and tumor features were analyzed from 2 cohorts: a US cohort and an external validation UK cohort. A multivariable Fine and Gray competing risk (FG) model was utilized to account for the competing risk.

Results

DSD demonstrated greater discriminatory power as a survival endpoint when compared with OS. Multivariate FG analysis identified the most impactful features of DSD: truncal lesions (subdistribution hazard ratios [SHRs] = 1.96, P < .001), age >84 years (SHR = 1.79, P < .001), male sex (SHR = 1.34, P < .001), and marital status (SHR = 1.09, P < .001). A second FG model incorporating those impactful features enhanced survival predictions beyond current MCC staging criteria alone in both the US (C-index 0.75 vs 0.64, P < .001) and external validation UK cohort (C-index 0.77).

Conclusions

MCC staging can stratify DSD better than OS. Additional patient and tumor features enhanced prognostication beyond current staging systems.

Il testo completo di questo articolo è disponibile in PDF.

Key words : AJCC staging, Merkel cell carcinoma, prognostication, SEER, skin cancer, survival

Abbreviations used : AJCC, DSD, MCC, OS, SHR


Mappa


 Funding sources: Dr Andrew was supported by a clinical PhD studentship from Cancer Research United Kingdom (CRUK). Dr Brownell was supported by the NIAMS, NIH intramural research program (ZIA AR041222). Dr Rose was supported by a National Institute for Health and Care Research (NIHR) Clinical Lectureship and NuTH Research Capability Funding. This research was supported by the NIHR Newcastle Biomedical Research Centre awarded to the NuTH, Newcastle University and Cumbria, Northumberland, Tyne, and Wear Foundation Trust.
 Patient consent: Not applicable.
 IRB approval status: Not applicable.


© 2024  American Academy of Dermatology, Inc. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 92 - N° 3

P. 520-527 - marzo 2025 Ritorno al numero
Articolo precedente Articolo precedente
  • Clinical presentations and decreasing incidence of melanoma in pediatric and adolescent and young adult patients: 76,108 cases from a nationally representative cohort
  • Bianca E. Ituarte, Mitchell A. Taylor, Sierra I. Thomas, Divya Sharma, Kaeli Samson, Mollie Oudenhoven, Nicole Harter, Erin X. Wei, Ashley Wysong
| Articolo seguente Articolo seguente
  • JAAD Game Changers: Aesthetic outcomes and complications of simple interrupted versus running subcuticular sutures in facial surgery: A randomized controlled trial
  • Andrew Patterson

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.