Abbonarsi

Patchwise Trabecular Bone Reconstruction of a 2D Proximal Femur Using Deep Learning and Seamless Quilting Algorithm - 18/04/25

Doi : 10.1016/j.irbm.2025.100889 
Bong Ju Chun a, Sang Min Sin b, Hyukjin Koh c, Jung Jin Kim d, In Gwun Jang c,
a Ground Technology Research Institute, Agency for Defense Development, 160, Bugyuseong-daero 488beon-gil, Yuseong-gu, Daejeon, Republic of Korea 
b 42dot Inc., 9F, D&O Gangnam Building 2621, Nambusunhwan-ro, Gangnam-gu, Seoul, Republic of Korea 
c Cho Chun Shik Graduate School of Mobility, Korea Advanced Institute of Science and Technology (KAIST), 193, Munji-ro, Yuseong-gu, Daejeon, Republic of Korea 
d Department of Mechanical Engineering, Keimyung University, 1095, Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea 

Corresponding author.

Abstract

Background and Objective

Current in vivo imaging modalities such as CT and MRI provide low-resolution (LR) skeletal images of a limited resolution (400 to 600 μm), which is insufficient to precisely evaluate bone strength. Similarly, recent deep learning technologies show a limitation in terms of upscale ratio and image size. They also require a large number of high-resolution (HR) reference images for training, which are unavailable to acquire in clinical practice. Although topology optimization shows the potential to reconstruct HR skeletal images from CT scan data, it requires extreme computing cost for a limited region of interest (ROI). The goal of this study is to acquire a 2D HR full proximal femur image by reconstructing HR patch images via a deep neural network and merging them seamlessly.

Methods

Topology optimization was conducted to generate synthetic proximal femur images. After these HR images were downscaled 10 times, finite element analysis was conducted to evaluate the structural behavior of the downscaled LR images. By dividing the proximal femur images into a set of patches which share their cut boundary, we could generate a total of 52,000 pairs of the HR and LR image patches and the LR structural behavior (nodal displacement in this study). Then, these patch-wise data were used to train three different deep neural networks: ResNet, U-Net, and SRGAN. Finally, after the HR patch images were upscaled 10 times by the trained networks, they were seamlessly merged by minimizing a structural discontinuity on the patch boundary.

Results

The reconstructed HR proximal femur images were evaluated at three different ROIs in terms of image quality, apparent stiffness, and trabecular morphometric indices. They showed characteristic trabecular patterns with no visible structural discontinuity between the patches in all ROIs. Among three networks, ResNet showed the best performance in all quantitative measures.

Conclusion

This study proposes a novel framework that incorporates deep learning-based patchwise reconstruction and seamless quilting algorithm. Because the proposed method requires a very small number of reference HR images (only 11 synthetic full proximal femur images in total), it could be expanded to reconstruct trabecular bone from 3D clinical CT scan data for more reliable bone strength assessment in clinical practice.

Il testo completo di questo articolo è disponibile in PDF.

Graphical abstract

Il testo completo di questo articolo è disponibile in PDF.

Highlights

Topology optimization-driven training for the deep neural network.
Generation of patchwise training data based on the concept of substructuring.
Seamlessly connected reconstruction for a proximal femur.
98% reduction in image reconstruction time.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Deep learning, Topology optimization, Patchwise reconstruction, Seamless quilting, Trabecular bone


Mappa


© 2025  AGBM. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 46 - N° 3

Articolo 100889- giugno 2025 Ritorno al numero
Articolo precedente Articolo precedente
  • An Approach to Compute Fetal Cardiac Biomarkers from the Abdominal Electrocardiogram
  • Paula Romina Soria, Pablo Daniel Cruces, César Federico Caiafa, Pedro David Arini
| Articolo seguente Articolo seguente
  • Case-Based Simulation to Support Complex Active Catheterization: Preliminary Results
  • Arif Badrou, Aurélien de Turenne, Nathan Lescanne, Jérôme Szewczyk, Raphaël Blanc, Nahiène Hamila, Nicolas Tardif, Aline Bel-Brunon, Pascal Haigron

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.