Abbonarsi

Mineralized tissue visualization with MRI: Practical insights and recommendations for optimized clinical applications - 06/05/25

Doi : 10.1016/j.diii.2024.11.001 
Pedro Augusto Gondim Teixeira a, b, , Hippolyte Kessler a, Lieve Morbée c, Nicolas Douis a, b, Fatma Boubaker a, Romain Gillet a, b, Alain Blum a
a Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy 54035, France 
b Université de Lorraine, Inserm, IADI, Nancy 54000, France 
c Department of Radiology, Ghent University Hospital, Ghent 9000, Belgium 

Corresponding author at: Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy 54035, France.Guilloz Imaging DepartmentCentral HospitalUniversity Hospital Center of NancyNancy54035France

Highlights

Mineralized tissue MRI techniques are promising for bone morphology and fracture detection but remain less accurate than computed tomography for subtle bone details.
Although mineralized tissue MR images resemble CT images, they are subjected to various types of artifacts and should not be interpreted like conventional CT images.
T1-weighted three-dimensional gradient echo sequences appear as robust and widely available solutions for mineralized tissue MRI providing high-quality images with a good signal-to-noise ratio.
Although they convey limited signal-to-noise ratio, ultra-short and zero echo time MRI sequences are the best ones for detecting calcification within tendons and ligaments.
Artificial intelligence-generated synthetic CT offers high-quality images with great potential, but comparison with the other mineralized tissue MRI techniques are needed.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Magnetic resonance imaging (MRI) techniques that enhance the visualization of mineralized tissues (hereafter referred to as MT-MRI) are increasingly being incorporated into clinical practice, particularly in musculoskeletal imaging. These techniques aim to mimic the contrast provided by computed tomography (CT), while taking advantage of MRI's superior soft tissue contrast and lack of ionizing radiation. However, the variety of MT-MRI techniques, including three-dimensional gradient-echo, ultra-short and zero-echo time, susceptibility-weighted imaging, and artificial intelligence-generated synthetic CT, each offer different technical characteristics, advantages, and limitations. Understanding these differences is critical to optimizing clinical application. This review provides a comprehensive overview of the most commonly used MT-MRI techniques, categorizing them based on their technical principles and clinical utility. The advantages and disadvantages of each approach, including their performance in bone morphology assessment, fracture detection, arthropathy-related findings, and soft tissue calcification evaluation are discussed. Additionally, technical limitations and artifacts that may affect image quality and diagnostic accuracy, such as susceptibility effects, signal-to-noise ratio issues, and motion artifacts are addressed. Despite promising developments, MT-MRI remains inferior to conventional CT for evaluating subtle bone abnormalities and soft tissue calcification due to spatial resolution limitations. However, advances in deep learning and hardware innovations, such as artificial intelligence-generated synthetic CT and ultrahigh-field MRI, may bridge this gap in the future.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Gradient echo, Musculoskeletal imaging, Susceptibility weighted imaging, Synthetic CT, Zero echo time

Abbreviations : 3D, AI, B0, CBCT, CT, FOV, FLASH, GRE, HU, ICC, LAVA, MRI, MT-MRI, PETRA, RF, SNR, SWI, TE, UTE, ZTE, THRIVE, VIBE


Mappa


© 2024  The Authors. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 106 - N° 5

P. 147-156 - maggio 2025 Ritorno al numero
Articolo precedente Articolo precedente
  • Robotics and artificial intelligence in the real world of interventional radiology: Innovation or illusion?
  • Baptiste Bonnet, Lambros Tselikas
| Articolo seguente Articolo seguente
  • Evaluation of navigation and robotic systems for percutaneous image-guided interventions: A novel metric for advanced imaging and artificial intelligence integration
  • Francois H. Cornelis, Dimitrios K Filippiadis, Philipp Wiggermann, Stephen B. Solomon, David C. Madoff, Laurent Milot, Sylvain Bodard

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.