Predicting stroke with machine learning techniques in a sub-Saharan African population - 21/06/25

Doi : 10.1016/j.neuri.2025.100216 
Benjamin Segun Aribisala a, b, c, Deirdre Edward a, Godwin Ogbole d, Onoja M. Akpa e, Segun Ayilara d, Fred Sarfo f, Olusola Olabanjo b, Adekunle Fakunle g, h, Babafemi Oluropo Macaulay b, Joseph Yaria h, Joshua Akinyemi e, Albert Akpalu i, Kolawole Wahab j, Reginald Obiako k, Morenikeji Komolafe l, Lukman Owolabi m, Godwin Osaigbovo n, Akinkunmi Paul Okekunle o, Arti Singh p, Philip Ibinaye k, Osahon Osawata e, Adeniyi Sunday j, Ijezie Chukwuonye q, Carolyn Jenkins r, Hemant K. Tiwari s, Okechukwu Ogah e, Ruth Y. Laryea f, Daniel T. Lackland r, Oyedunni Arulogun t, Omotolani Ajala h, Rufus Akinyemi u, v, Bruce Ovbiagele w, 1, Steffen Sammet a, , 1 , Mayowa Owolabi h, v, ⁎⁎, 1
on behalf of the SIREN and SIBS Genomics investigators
a Department of Radiology, University of Chicago, Chicago, IL, USA 
b Department of Computer Science, Lagos State University, Lagos, Nigeria 
c Department of Computer Science, Oduduwa University, Nigeria 
d Department of Radiology, University of Ibadan, Ibadan, Nigeria 
e Department of Epidemiology and Medical Statistics, University of Ibadan, Nigeria 
f Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana 
g Department of Public Health, College of Health Sciences, Osun State University, Osogbo, Nigeria 
h Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria 
i Department of Medicine, University of Ghana Medical School, Accra, Ghana 
j Department of Medicine, University of Ilorin Teaching Hospital, Ilorin, Nigeria 
k Department of Medicine, Ahmadu Bello University, Zaria, Nigeria 
l Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria 
m Department of Medicine, Aminu Kano Teaching Hospital, Kano, Nigeria 
n Department of Medicine, University of Jos, Jos, Nigeria 
o Department of Food and Nutrition, Seoul National University, Korea 
p Department of Epidemiology and Biostatistics, Kwame Nkrumah University of Science and Technology, Ghana 
q Department of Medicine, Federal Medical Centre, Umuahia, Nigeria 
r Medical University of South Carolina, Charleston, USA 
s University of Alabama at Birmingham, Birmingham, AL, USA 
t Department of Health Promotion, University of Ibadan, Ibadan, Nigeria 
u Department of Medicine, Federal Medical Centre, Abeokuta, Nigeria 
v Centre for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Nigeria 
w Weill Institute for Neurosciences, School of Medicine, University of California San-Francisco, USA 

Corresponding author at: Department of Radiology, University of Chicago Medicine, 5841 S. Maryland Avenue, MC2026 Chicago, IL 60637, USA.Department of RadiologyUniversity of Chicago Medicine5841 S. Maryland AvenueMC2026ChicagoIL60637USA⁎⁎Corresponding author at: Center for Genomics and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, University College Hospital, Ibadan, and Blossom Specialist Medical Center, Ibadan, Nigeria.Center for Genomics and Precision MedicineCollege of MedicineUniversity of IbadanUniversity College HospitalBlossom Specialist Medical CenterIbadanIbadanIbadanNigeria

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Background

Stroke is the second leading cause of death and the third leading cause of disability globally, including Africa, which bears its largest burden. Accurate models are needed in Africa to predict and prevent stroke occurrence. The aim of this study was to identify the best machine learning (ML) algorithm for stroke prediction.

Methods

We assessed medical data of 4,236 subjects comprising 2,118 stroke patients and 2,118 controls from the SIREN database. Sixteen established vascular risk factors were evaluated in this study. These are addition of salt to food at table during eating, cardiac disease, diabetes mellitus, dyslipidemia, education, family history of cardiovascular disease, hypertension, income, low green leafy vegetable consumption, obesity, physical inactivity, regular meat consumption, regular sugar consumption, smoking, stress and use of tobacco. From these, we also selected the 11 topmost risk factors using Population-Attributable Risk ranking. Eleven ML models were built and empirically investigated using the 16 and the 11 risk factors.

Results

Our results showed that the 16 features-based classification (maximum AUC of 82.32%) had a slightly better performance than the 11 feature-based (maximum AUC 81.17%) algorithm. The result also showed that Artificial Neural Network (ANN) had the best performance amongst eleven algorithms investigated with AUC of 82.32%, sensitivity of 71.23%, specificity of 80.00%.

Conclusion

Machine Learning algorithms predicted stroke occurrence employing major risk factors in Sub-Saharan Africa better than regression models. Machine Learning, especially Artificial Neural Network, is recommended to enhance Afrocentric stroke prediction models for stroke risk factor quantification and control in Africa.

Il testo completo di questo articolo è disponibile in PDF.

Highlights

Stroke incidence is reducing in the Western world but increasing in Africa.
Accurate computational models are needed in Africa to predict and prevent stroke occurrence.
We proposed 11 machine learning models for predicting stroke in Africa.
Our results show that machine learning has a high predictive value.
Our results also identified 16 major risk factors for stroke in Africa.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Stroke, SIREN, Sub-Sahara Africa, Risk factors, Machine learning, Artificial neural network


Mappa


© 2025  Pubblicato da Elsevier Masson SAS.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 5 - N° 3

Articolo 100216- settembre 2025 Ritorno al numero
Articolo precedente Articolo precedente
  • Exploring community pharmacist's psychological intentions to adopt generative artificial intelligence (GenAI) chatbots for patient information, education, and counseling
  • Hafidz Ihsan Hidayatullah, Muhammad Taufiq Saifullah, Muhammad Thesa Ghozali, Ayesha Aziz
| Articolo seguente Articolo seguente
  • Beyond the numbers: App-enabled stroke prediction system for high-risk individuals in imbalanced datasets
  • Abrar Faiaz Eram, Aliva Sadnim Mahmud, Marwan Mostafa Khadem, Md Amimul Ihsan

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.