Beyond the numbers: App-enabled stroke prediction system for high-risk individuals in imbalanced datasets - 24/06/25

Doi : 10.1016/j.neuri.2025.100215 
Abrar Faiaz Eram a, Aliva Sadnim Mahmud a, Marwan Mostafa Khadem b, Md Amimul Ihsan c, d,
a Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh 
b Department of Japanese Studies, University of Dhaka, Dhaka, 1000, Bangladesh 
c Department of Electrical and Electronic Engineering, Jamalpur Science and Technology University, Jamalpur, 2010, Bangladesh 
d Department of Biomedical Physics and Technology, University of Dhaka, Dhaka, Bangladesh 

Corresponding author at: Department of Electrical and Electronic Engineering, Jamalpur Science and Technology University, Jamalpur, 2010, Bangladesh.Department of Electrical and Electronic EngineeringJamalpur Science and Technology UniversityJamalpur2010Bangladesh

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Background:

Brain stroke, characterized by interrupted blood flow to the brain, poses significant mortality risks and quality-of-life impacts. While machine learning approaches show promise in stroke prediction, current research often relies on synthetic data to address dataset imbalance, potentially compromising real-world model performance in clinical settings.

Method:

This research proposes an alternative approach focusing on recall as the primary evaluation metric for stroke prediction, specifically targeting the reduction of false negatives. In the context of stroke diagnosis, where missed detection can lead to severe consequences or fatality, recall is crucial for directly measuring the model's ability to identify actual stroke cases.

Results:

Three superior models were identified: Logistic Regression, an Ensemble using Soft Voting (combining Gaussian Naive Bayes and Logistic Regression), and customized Support Vector Machine. Exceptional stroke prediction was achieved with recall values of 92%, 92%, and 94%, respectively. Interpretability is enhanced through SHAP applied to the best one. While previous methods showed recall values between 5.6% and 40%, this approach outperformed these benchmarks (94%). Current research emphasizes accuracy metrics, relying on oversampling, being inappropriate for sensitive medical datasets. The pitfall is a slight increase in false positives, which is tolerable because the cost of misdiagnosing a stroke patient far outweighs the reverse scenario.

Conclusions:

The research demonstrates the effectiveness of focusing on recall as an evaluation metric for stroke prediction, minimizing false negative predictions. To facilitate practical implementation, a mobile application incorporating the best-performing model was included. A primary screening which can supplement doctors in stroke diagnosis and prediction was proposed.

Il testo completo di questo articolo è disponibile in PDF.

Graphical abstract




Il testo completo di questo articolo è disponibile in PDF.

Highlights

Depiction of accuracy and weighted measures as inefficient evaluation metrics for the imbalanced stroke prediction dataset.
Assessment of multiple ML models without oversampling while adopting recall as the proper evaluation metric.
Integration of XAI through the use of SHAP and a Flutter based mobile application using the best performing models.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Brain stroke prediction, Data imbalance, Recall, SHAP


Mappa


© 2025  The Author(s). Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 5 - N° 3

Articolo 100215- settembre 2025 Ritorno al numero
Articolo precedente Articolo precedente
  • Predicting stroke with machine learning techniques in a sub-Saharan African population
  • Benjamin Segun Aribisala, Deirdre Edward, Godwin Ogbole, Onoja M. Akpa, Segun Ayilara, Fred Sarfo, Olusola Olabanjo, Adekunle Fakunle, Babafemi Oluropo Macaulay, Joseph Yaria, Joshua Akinyemi, Albert Akpalu, Kolawole Wahab, Reginald Obiako, Morenikeji Komolafe, Lukman Owolabi, Godwin Osaigbovo, Akinkunmi Paul Okekunle, Arti Singh, Philip Ibinaye, Osahon Osawata, Adeniyi Sunday, Ijezie Chukwuonye, Carolyn Jenkins, Hemant K. Tiwari, Okechukwu Ogah, Ruth Y. Laryea, Daniel T. Lackland, Oyedunni Arulogun, Omotolani Ajala, Rufus Akinyemi, Bruce Ovbiagele, Steffen Sammet, Mayowa Owolabi
| Articolo seguente Articolo seguente
  • EEG–fNIRS signal integration for motor imagery classification using deep learning and evidence theory
  • Mohammed E. Seno, Niladri Maiti, Maulik Patel, Mihirkumar M. Patel, Kalpesh B. Chaudhary, Ashish Pasaya, Babacar Toure

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.