Abbonarsi

Construction and validation of a nomogram prediction model for death risk in patients with chronic obstructive pulmonary disease complicated by hypercapnic respiratory failure in the intensive care unit - 02/07/25

Doi : 10.1016/j.rmed.2025.108188 
Ye Zhang a, Hao Chen b, Shiyu Hu d, Chengshui Chen c, Wenyu Chen c, d,
a Department of Health Management Center, Affiliated Hospital of Jiaxing University, China 
b Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, China 
c Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, China 
d Department of Respiratory Medicine, Affiliated Hospital of Jiaxing University, China 

Corresponding author. Department of respiratory medicine, Affiliated Hospital of Jiaxing University, No. 1882, Zhonghuan South Road, Nanhu District, Jiaxing City, Zhejiang Province, 314001, China. Department of respiratory medicine Affiliated Hospital of Jiaxing University No. 1882 Zhonghuan South Road Nanhu District Jiaxing City Zhejiang Province 314001 China

Abstract

Background

A nomogram prediction model was developed to estimate the death risk in patients with chronic obstructive pulmonary disease (COPD) complicated by hypercapnic respiratory failure (HRF). The prediction performance and clinical applicability were validated.

Methods

The clinical data of 2454 COPD patients with HRF from the MIMIC-IV (Medical Information Mart for Intensive Care IV, Version 3.0) database were included and randomized into a training set (n = 1717) and a validation set (n = 737). A nomogram prediction model for the death risk was constructed using two methods: the least absolute shrinkage and selection operator (LASSO) regression analysis and the multifactorial logistic regression. The model was evaluated and validated using several analytical methods, including receiver operating characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and Kaplan-Meier (KM) curves.

Results

The findings indicated that age, red cell distribution width, white blood cell count, acute Physiology Score III, partial pressure of oxygen, lung cancer, vasopressor use, and lack of mechanical ventilation were independent predictors for death in COPD patients with HRF (P < 0.05). The nomogram prognosis model demonstrated that the area under the ROC curve (AUC) for predicting the death risk within 30, 60, and 90 days was 0.767 (0.738–0.796), 0.750 (0.721–0.779), and 0.737 (0.708–0.767), respectively. Calibration plots and DCA curves demonstrated strong consistency and favorable clinical applicability.

Conclusion

A nomogram incorporating 8 variables was developed to predict the death risk in COPD patients with HRF. It is a simple, convenient, and relatively accurate tool that can be used to guide clinical decision-making and enhance patients' outcomes.

Il testo completo di questo articolo è disponibile in PDF.

Highlights

This study breaks the traditional research direction and establishes a nomogram model for this population, which is innovative.
The constructed nomogram model accurately predicted the risk of death in COPD patients with HRF.
This study aids in the early detection and timely treatment of COPD patients, promoting improved prognosis and reducing their economic burden.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Chronic obstructive pulmonary disease, Hypercapnic respiratory failure, Death risk, Nomogram, Prediction model, ICU


Mappa


© 2025  Elsevier Ltd. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 245

Articolo 108188- agosto 2025 Ritorno al numero
Articolo precedente Articolo precedente
  • Comparative effectiveness of inhaled fluticasone propionate/salmeterol and budesonide/formoterol fixed-dose combinations in asthma control – a retrospective United States database analysis
  • Nicola A. Hanania, Richard Stanford, Adrian Rendon, Bilun Gemicioglu, Leandro Fritscher, Watchara Boonsawat, Anurita Mamjudar, Nnaemeka Odo, Mohamed Hamouda
| Articolo seguente Articolo seguente
  • Unveiling genetic links: GSDMB polymorphisms and asthma susceptibility in the Zhuang Nationality of Guangxi
  • Haili Li, Xuemei Huang, Zuyou Wei, Zhangrong Chen, JingMin Deng

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.