Abbonarsi

Computer-assisted classification of the squamocolumnar junction - 15/07/25

Doi : 10.1016/j.gie.2025.01.020 
Hannah R. Phillips, MD 1, , Jeffrey R. Fetzer, MS 2, , Sanket Bhattarai, MBBS 2, Sandra Algarin Perneth, MD 2, D. Chamil Codipilly, MD 2, Derek W. Ebner, MD 2, Adam C. Bledsoe, MD 2, Amrit Kamboj, MD 3, Daniel A. Schupack, MD 2, Victor Chedid, MD 2, Nayantara Coelho-Prabhu, MBBS 2, Diana Snyder, MD 2, Karthik Ravi, MD 2, Kevin Buller 2, Cadman L. Leggett, MD 2,
1 Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA 
2 Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA 
3 Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California, USA 

Corresponding author: Cadman L. Leggett, MD, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905.Division of Gastroenterology and HepatologyMayo Clinic200 First St SWRochesterMN55905

Abstract

Background and Aims

An irregular Z-line is characterized by a squamocolumnar junction (SCJ) that extends proximally above the gastroesophageal junction by <1 cm, whereas Barrett’s esophagus is defined as a columnar-lined esophagus (CLE) that extends proximally by ≥1 cm with the presence of specialized intestinal metaplasia on biopsy sampling. Measurement of the CLE is most accurate for lengths ≥1 cm, and, as such, guidelines do not recommend biopsy sampling of an irregular Z-line when seen on endoscopy. However, a CLE is often estimated by visual inspection rather than direct measurement, making this characterization imprecise. In this study, we present methodology to standardize the characterization of the SCJ, hypothesizing that the shape of the Z-line can be used as a surrogate classifier. We present a computer-generated algorithm capable of automated segmentation and shape complexity quantification of the Z-line.

Methods

We selected and manually segmented 849 images of the Z-line. We used the nnUNet framework (Nature Methods, Heidelberg, Germany) to train a model to segment the Z-line. An additional dataset of 58 videos containing the Z-line were obtained from the Mayo Clinic Endoscopy video library. A high-quality image containing the Z-line was selected from each video. Ten gastroenterologists (5 esophageal experts) rated each of the 58 video–image pairs containing the Z-line as “regular” or “irregular,” including their degree of confidence. Fleiss κ statistics were used to determine interobserver variability. The “ground truth” classification was determined by the esophageal expert majority vote. A wavelet decomposition model was then used to determine the threshold of irregularity based on the ground truth. Heat maps were generated for each Z-line to determine localized areas of complexity.

Results

Fair agreement, with a Fleiss κ of .39, was observed among the 10 endoscopists when rating the Z-line as regular versus irregular using this dataset. Moderate agreement was observed among the 5 esophageal experts with a Fleiss κ statistic of .42, and fair agreement was observed among the 5 nonesophageal experts with a Fleiss κ statistic of .31. The wavelet energy coefficient optimal threshold to classify an SCJ as irregular was determined to be 1.53 × 107 with an accuracy of 78%.

Conclusions

Our computer-generated model was capable of automatic segmentation and classification of the Z-line. We established a threshold of complexity using the wavelet energy coefficient to standardize the classification of the SCJ.

Il testo completo di questo articolo è disponibile in PDF.

Abbreviations : BE, CLE, EAC, GEJ, IM, SCJ


Mappa


 DIVERSITY, EQUITY, AND INCLUSION: One or more of the authors of this paper self-identifies as an under-represented gender minority in science. One or more of the authors of this paper self-identifies as a member of the LGBTQ+ community. One or more of the authors of this paper self-identifies as an under-represented ethnic minority in science.


© 2025  American Society for Gastrointestinal Endoscopy. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 102 - N° 2

P. 245-251 - agosto 2025 Ritorno al numero
Articolo precedente Articolo precedente
  • Future of pancreas divisum diagnosis: linear-array endoscopic ultrasound leads the way
  • Ali A. Siddiqui
| Articolo seguente Articolo seguente
  • Should artificial intelligence be implemented into any scene?
  • Yosuke Tsuji

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.