Abbonarsi

Evaluating the impact of artificial intelligence in antimicrobial stewardship: a comparative meta-analysis with traditional risk scoring systems - 24/07/25

Doi : 10.1016/j.idnow.2025.105090 
Antonio Pinto a, Flavia Pennisi b, a, , Giovanni Emanuele Ricciardi a, b, Carlo Signorelli a, Vincenza Gianfredi c
a Faculty of Medicine, University Vita-Salute San Raffaele, Milan, Italy 
b National Program in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia 27100, Italy 
c Department of Biomedical Sciences for Health, University of Milan, Via Pascal 36, 20133 Milan, Italy 

Corresponding author at: National Program in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia 27100, Italy.National Program in One Health Approaches to Infectious Diseases and Life Science ResearchDepartment of Public Health, Experimental and Forensic MedicineUniversity of PaviaPavia27100Italy

Highlights

Artificial Intelligence enhances antimicrobial stewardship by improving decision-making in antimicrobial resistance management.
Machine Learning models outperform traditional methods in terms of sensitivity and negative predictive value.
External validation is limited, raising concerns about the broad applicability of findings.
Regulatory frameworks and explainable AI are needed to integrate ML-based AMS tools into clinical practice effectively.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Objectives

The growing challenge of antimicrobial resistance (AMR) has underscored the urgent need for robust antimicrobial stewardship programs (AMS). Artificial intelligence (AI) and machine learning (ML) have emerged as promising tools to support enhanced decision-making in AMS. This systematic review and meta-analysis aims to evaluate the impact of AI in AMS and compare its effectiveness with traditional risk systems.

Methods

PubMed/MEDLINE, Scopus, EMBASE, and Web of Science were searched to identify studies published up to July 2024. Any studies that evaluated the use of AI/ML in AMS compared with conventional decision-making approaches were eligible. Outcomes of interested were predictive performance metrics and diagnostic accuracy. The meta-estimate was performed pooling standardized mean difference, and effect size (ES) measured as Cohen’s d with a 95% confidence interval (CI). The risk of bias was assessed using the QUADAS-AI tool.

Results

Out of 3,458 studies, 27 were included, demonstrating that ML models outperform traditional methods in terms of sensitivity [1.93 (0.48–3.39) p = 0.009], and negative predictive value [1.66 (0.86–2.46), p < 0.001] but not in terms of area under the curve, accuracy, specificity, positive predictive value, when random effect models were applied.

Conclusions

Our results revealed that ML tools offer promising enhancements to traditional AMS strategies. However, high heterogeneity, inconsistent results between fixed and random effect models, and limited use of external validation in retrieved studies raise concerns about the generalizability of the findings. Furthermore, the lack of representation from outpatient and pediatric settings highlights a critical equity gap in the application of these technologies.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Artificial intelligence, Machine learning, Antimicrobial resistance, Antimicrobial stewardship, Meta-analysis


Mappa


© 2025  The Authors. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 55 - N° 5

Articolo 105090- agosto 2025 Ritorno al numero
Articolo precedente Articolo precedente
  • Infectious foodborne disease outbreaks and sporadic cases in Saudi Arabia: A 2017–2023 trend analysis
  • Amjad Alfaleh, Abdullah Alkattan, Abrar Alzaher, Khlood Sagor, Saud Almarshoud, Mona H. Ibrahim
| Articolo seguente Articolo seguente
  • Acute hepatitis E virus infection in adults, Cayenne, French Guiana, 2015–2022
  • Clotilde de Colnet, Alolia Aboikoni, Mathieu Nacher, Loïc Epelboin, Céline Michaud, Alexia Barbry, Jacques Izopet, Paul Le Turnier

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.