Abbonarsi

Electrical Cardioversion Outcome Prognosis: A Multivariate Multiscale Entropy Characterization of Atrial Activity in Persistent Atrial Fibrillation - 30/07/25

Doi : 10.1016/j.irbm.2025.100905 
Eva María Cirugeda Roldan a, , Eva Plancha b, 1, Victor M. Hidalgo c, 2, Sofía Calero c, 3, Jose Joaquín Rieta d, 4, Raul Alcaraz e, 5
a Department of Signal Processing and Communications, Universidad Rey Juan Carlos, Fuenlabrada, Spain 
b Department of Cardiac Arrhythmia, Salut Xativa-Ontinyent, Valencia, Spain 
c Cardiac Arrhythmia Department, University of Albacete, Albacete, Spain 
d BioMit.org, Electronic Engineering Department, Universitat Politecnica de Valencia, Gandía, Spain 
e Research Group in Electronic, Biomedical and Telecommunication Engineering, University of Castilla-La Mancha, Cuenca, Spain 

Corresponding author at: Camino del Molino, 5, 28942 Fuenlabrada, Spain.Camino del Molino, 5Fuenlabrada28942Spain

Abstract

Background

Atrial fibrillation (AF) remains a significant cause of stroke, heart failure, and cardiovascular morbidity worldwide. Despite advancements in AF management, electrical cardioversion (ECV) remains the most commonly used technique for sinus rhythm (SR) restoration although presenting a limited success rate in the mid-term along with a high number of side-effects which can lead to an increase in patients health deterioration and, consequently, in healthcare costs. Hence, predicting ECV outcome in the mid-term remains a challenging task. Here, a new framework based on multivariate multiscale entropy (MMSE) characterization of atrial activity is proposed to improve ECV outcome prediction in the mid-term.

Methods

58 patients with persistent AF scheduled for ECV were considered. A 12-Lead standard ECG segment of 1.5 min duration prior to the first electrical shock was analyzed. The atrial activity (AA) is estimated from the 12-lead surface ECG using a QT segment removal algorithm based on QRS complex estimation and pattern recognition techniques. AA is characterized by means of multivariate extensions of traditional indices such as the amplitude of the fibrillatory waves and dominant frequency along with multivariate extensions of complexity measures as multivariate Sample Entropy and finally Multivariate Multiscale Entropy (MMSE). These indices were estimated over 12-lead ECG records from 58 ECV derived patients who were classified based on SR maintenance after 30-day follow up (mid-term evaluation). ECV prognosis was evaluated using ROC curves and Youden's Criteria for optimal threshold establishment. Performance was compared to that of unidimensional indices.

Results

Patients who maintained SR post-ECV exhibited distinct complexity patterns compared to those who relapsed into AF. Specifically, MMSE provided higher discriminant accuracy than traditional unidimensional indices. When considering only the limb leads in the analysis, the best performance was achieved, over 83% accurate classification of SR restoration in the mid-term (Se = 0.74, Sp = 0.85,   0.001). Additionally, the accumulated entropy and slope of the MMSE curves, offered robust predictors of ECV outcomes providing better balanced sensitivity and specificity ROC curves.

Conclusions

This work highlights the importance of multivariate approaches in AF characterization and provides a comprehensive framework for improving ECV outcome prediction, providing an increase in almost a 30% of correct predictions in the mid-term. Future research should explore the integration of these methods into clinical practice to optimize treatment strategies for AF patients and reduced healthcare costs.

Il testo completo di questo articolo è disponibile in PDF.

Graphical abstract




Il testo completo di questo articolo è disponibile in PDF.

Highlights

Spatial organization seems to be more relevant to reveal SR maintenance dynamics.
Multidimensional extension of traditional indices enhances ECV outcome prediction.
MMSE outperforms single lead entropy approaches in ECV outcome prediction.
Aggregated entropy indices overcome single scale indices in predicting ECV outcome.
QDA using multivariate indices correctly predicts ECV outcome in over 90% of cases.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Atrial fibrillation, Complexity analysis, Electrical cardioversion, Multivariate multi-scale entropy, Spatial complexity, 12-Lead surface electrocardiogram


Mappa


© 2025  AGBM. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 46 - N° 5

Articolo 100905- ottobre 2025 Ritorno al numero
Articolo precedente Articolo precedente
  • Contents
| Articolo seguente Articolo seguente
  • Production and Characterisation of Electrospun Polymer Nanofibres for Eventual Use in Miniaturised Biomedical Electrode Systems
  • Amalric Montalibet, Gaukhar Mendigaliyeva, Jean-François Chateaux, Jean-Pierre Cloarec, Eric McAdams

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.