Revealing spatiotemporal neural activation patterns in electrocorticography recordings of human speech production by mutual information - 04/09/25

Doi : 10.1016/j.neuri.2025.100232 
Julio Kovacs a, Dean Krusienski b, Minu Maninder c, Willy Wriggers a,
a Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, United States of America 
b Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America 
c Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, United States of America 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Background

Spatiotemporal mapping of neural activity during continuous speech production has been traditionally approached using correlation coefficient (CC) analysis between cortical signals and speech recordings. A prior study employed this approach using electrocorticography (ECoG) data from participants who underwent invasive intracranial monitoring for epilepsy. However, CC cannot detect nonlinear relationships and is dominated by the correspondence between periods of silence and of non-silence.

New Method

We introduce the mutual information (MI) measure, which can capture both linear and nonlinear dependencies. We validated CC and MI on the sub-second spatiotemporal brain activity recorded during continuous speech tasks. To refine the results, we also implemented a novel “masked analysis”, which excludes periods of silence, and compared it with the standard (unmasked) analysis.

Results

Our findings show that previous results, obtained through more complex statistical methods, can be reproduced using CC with an appropriate threshold cutoff. Moreover, both standard MI and CC are influenced by broad transitions between silence and speech, but masking allows the detection of intrinsic correspondences between the two signals, revealing more localized activity.

Comparison with existing methods

Compared to the standard CC, masked MI highlights early prefrontal and premotor activations emerging ∼440 ms before speech onset. It also identifies sharper, anatomically coherent activations in key speech-related areas, demonstrating improved sensitivity to the fine-grained spatiotemporal dynamics of continuous speech production.

Conclusion

These findings deepen our understanding of the neural pathways underlying speech and underscore the potential of masked MI for advancing neural decoding in future speech-based brain-computer interface applications.

Il testo completo di questo articolo è disponibile in PDF.

Highlights

Mutual information (MI) captures nonlinear neural dynamics missed by traditional cross correlation (CC) methods.
Masked MI detects earlier, more precise brain activity than standard (unmasked) methods.
MI yields higher signal clarity than CC, enhancing accuracy of speech decoding.
Masking silences improves spatial accuracy in mapping speech-related brain areas.
Findings support masked MI's use in real-time BCIs for speech in clinical settings.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Electrocorticography (ECoG), Mutual information, Neural signal analysis, Spatiotemporal mapping, Brain-computer interface (BCI), Masked analysis


Mappa


© 2025  The Author(s). Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 5 - N° 4

Articolo 100232- dicembre 2025 Ritorno al numero
Articolo precedente Articolo precedente
  • Morphometric characterization of early- and late-onset Parkinson's disease: An ROI-based study of classification and correlation
  • Sadhana Kumari, Bharti Rana, Shefali Chaudhary, Roopa Rajan, S. Senthil Kumaran, Achal Kumar Srivastava, Leve Joseph Devarajan
| Articolo seguente Articolo seguente
  • A comparative study of hybrid decision tree–deep learning models in the detection of intracranial arachnoid cysts
  • Aziz Ilyas Ozturk, Osman Yıldırım, Ebru İdman, Emrah İdman

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.