Age-related changes in brain fiber pathways based on directional decomposition of DTI tractograms - 08/01/26
, Yoshiki Kubota
, Akimasa Hirata ⁎ 
Abstract |
This study investigated age-related changes of brain fiber pathways from diffusion tensor imaging (DTI) tractograms with directional decomposition. Two hundred subjects were stratified into three age groups. Tractograms were generated at two levels: from individual DTI images (subject-level), and from group-averaged images (group-level). Fiber tracking was performed within the cerebral white matter, brainstem, thalamus, and cerebellum at both the levels. Each tractogram was decomposed into directional tracts. At the subject-level, original and decomposed tracts were used to quantify tract density and correlations with age. Tract density was highest in the thalamus and brainstem, while the cerebellum showed the greatest inter-subject variability. Tract count exhibited some significant correlations with age: in cerebral white matter, it decreased overall, especially along S-I and A-P directions; in thalamus, S-I and A-P tracts decreased, while L-R and mixed-direction tracts increased. The brainstem tracts demonstrated its overall stability during aging. At the group level, ∼60 % of brainstem tracts were oriented along the S–I direction, and ∼64 % of cerebellar tracts along the A–P direction. Notably, the posterolateral tracts of the cerebellum showed asymmetry, with the left side associated with visuospatial processing, containing fewer tracts than the right side associated with language pathways. These findings highlight region- and direction-specific changes with age, revealing structural patterns that are not captured by conventional scalar measures. They suggested candidate biomarkers for brain aging and provided useful references for longitudinal neuroimaging and brain stimulation studies, with potential applications in the early detection of neurodegeneration and optimization of stimulation strategies.
Il testo completo di questo articolo è disponibile in PDF.Keywords : Diffusion tensor imaging (DTI), White matter, Brain aging, Tractography, Neural fiber pathways, Group-level analysis
Mappa
Vol 6 - N° 1
Articolo 100255- marzo 2026 Ritorno al numeroBenvenuto su EM|consulte, il riferimento dei professionisti della salute.
