Abbonarsi

Deep-learning image reconstruction algorithms for CT: A task-based image quality assessment of four CT systems using a phantom - 15/01/26

Doi : 10.1016/j.diii.2026.01.003 
Joël Greffier , Alexa Liogier, Maxime Pastor, Fabien de Oliveira, Quentin Chaine, Skander Sammoud, Jean Paul Beregi, Djamel Dabli
 IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France 

Corresponding author.
In corso di stampa. Prove corrette dall'autore. Disponibile online dal Thursday 15 January 2026

Highlights

Deep-learning image reconstruction algorithms have been developed to compensate for the limitations of the iterative reconstruction algorithms, particularly with regard to changes in noise texture.
Compared to iterative reconstruction algorithms, deep-learning image reconstruction algorithms reduce noise magnitude and improve lesion detectability while maintaining, or even improving, noise texture and spatial resolution.
The emergence and development of new deep-learning image reconstruction algorithms opens up many possibilities for optimizing CT protocols and improving radiological care for patients.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Purpose

The purpose of this study was to assess the performance of iterative reconstruction (IR) and deep-learning image reconstruction (DLR) algorithms developed by four CT vendors in terms of image quality.

Materials and methods

Acquisitions were performed on an image quality phantom at three dose levels (1.8, 6 and 11 mGy) using four CT systems (further referred to as G-CT, P-CT, U-CT, and C-CT). For each CT, raw data were reconstructed using the commonly used soft tissue kernel and level for IR and DLR algorithms. Noise power spectrum and task-based transfer function were computed to assess noise magnitude, noise texture (f av ) and spatial resolution, respectively. Detectability indexes ( d ’) were computed to model the detection of two abdominal lesions.

Results

Compared to IR, noise magnitude reduction with DLR was similar for all dose levels for G-CT (-21.1 ± 1.5 [standard deviation (SD)] %) and P-CT (-48.4 ± 0.1 [SD] %) but more pronounced at 1.8 mGy and decreased as the dose level increased for U-CT and C-CT. Noise texture was greater with DLR than IR at all dose levels for all CT systems, except for U-CT, which gave similar f av values. For both inserts, spatial resolution was better with DLR than with IR for all CT systems, except for the low-contrast insert with C-CT at 1.8 and 6 mGy and P-CT at 1.8 mGy. For both simulated lesions and all dose levels, d ’ values were greater with DLR than with IR by 77.5 ± 8.7 (SD) % for C-CT, 33.7 ± 5.6 (SD) % for G-CT, 112.7 ± 4.7 (SD) % for P-CT and from 158.3 % to 546.6 % on average for U-CT.

Conclusion

Compared to IR, DLR algorithms reduce the image noise and improve detectability whilst providing similar or better noise texture and spatial resolution.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Deep-learning image reconstruction algorithm, Iterative reconstruction algorithm, Multidetector computed tomography, Phantom studies, Task-based image quality assessment

Abbreviations : C-CT, CT, CTDI vol , CNN, d ' , DLR, G-CT, HU, IR, NPS, P-CT, ROI, TTF, U-CT


Mappa


© 2026  The Author(s). Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.