Abbonarsi

A clinical prediction model for beta cell monogenetic diabetes in Chinese patients with early-onset type 2 diabetes - 15/01/26

Doi : 10.1016/j.diabet.2026.101729 
Siyu Sun 1, &, Siqian Gong 1, &, Tianhao Ba 1, &, Meng Li 1, Wei Liu 1, Rui Zhang 1, Yumin Ma 1, Fang Wang 3, Xiaoling Cai 1, Yingying Luo 1, Simin Zhang 1, Lingli Zhou 1, Yu Zhu 1, Xiuying Zhang 1, Jing Chen 1, Ling Chen 1, Jing Wu 1, Leili Gao 1, Xianghai Zhou 1, Liyong Zhong 3, Xirui Wang 4, Xinhua Xiao 5, Weijun Gu 6, Jinkui Yang 7, Qiuping Wang 8, Wei Deng 9, Lin Qi 10, Wenbo Wang 11, Hong Lian 1, Yufeng Li 2, Qian Ren 1, , Xueyao Han 1, , Linong Ji 1,
1 Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center No·11, Xizhimen South Street, Beijing 100044, China 
2 Beijing Pinggu Hospital No·59, Xinping North Street, Beijing 101200, China 
3 Beijing Tiantan Hospital, Capital Medical University No.119, Nansihuan West Street, Beijing 100050, China 
4 Beijing Airport Hospital No.49, Shuangyu Street, Beijing 101318, China 
5 Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences& Peking Union Medical College, Beijing, 100032, China 
6 Department of Endocrinology, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, China 
7 Capital Medical University Beijing Tongren Hospital No.8, Chongwen Mennei Street, Beijing, 100730, China 
8 Beijing Fangshan District Liangxiang Hospital No.45, Gongchen Ave. Beijing, 102488, China 
9 Beijing Jishuitan Hospital No.31, Xinjiekou East Street, Xicheng District, Beijing, 100035, China 
10 Beijing Yanhua Hospital No.15, Yanshan Yingfeng Street, Fangshan District, Beijing, 102500, China 
11 Peking University Shougang Hospital, No.9, Jinyuanzhuang Road, Shijingshan District, Beijing, 100144, China 

Co-corresponding author: Qian Ren, Xueyao Han and Linong Ji contributed equally to this study.
In corso di stampa. Manoscritto Accettato. Disponibile online dal Thursday 15 January 2026

Highlights

There is lack of a simple clinical screening tool for multi-type beta cell monogenetic diabetes (beta-cell-MgD) for Chinese population.
Based on the TyG index (as an insulin resistance marker), age at diagnosis and BMI, a clinical model (the TyG-MgD score) for predicting multi-type beta-cell-MgD with high sensitivity was developed.
The TyG-MgD score could act as a convenient and low-cost tool to pick who are most likely to benefit from next generation sequencing in Chinese population.
Polygenetic risk scores showed a great potential for further screening beta-cell-MgD.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Aim

Monogenic diabetes is a group of disorders arising from single gene mutations with a clear pathophysiology, most of which present with impaired beta cell function rather than insulin resistance. This study aims to evaluate the ability of TyG index and polygenetic risk score (PRS) to identify multi-type beta cell monogenetic diabetes (beta-cell-MgD) in Chinese early-onset type 2 diabetes (EOD) population.

Methods

A prediction model for beta-cell-MgD was established by logistic regression analysis in Cohort 1 (92 beta-cell-MgD, 512 EOD). Model performance was evaluated by receiver operating characteristic curves (ROC) and validated in an independent case-control sample (Cohort 2, 35 beta-cell-MgD, 50 EOD) and a newly diagnosed drug-naive EOD cohort (Cohort 3, 7 beta-cell-MgD, 176 EOD). PRS was constructed based on Genome-wide genotyping data from participants in Cohort 3. The ability of PRS to identify beta-cell-MgD was tested by ROC.

Results

The TyG-MgD score based on age at diagnosis, BMI and TyG presented a good performance to distinguish beta-cell-MgD (AUC=0.769), and achieving AUCs of 0.966 and 0.754 respectively in validation cohorts. At the optimal cutoff point -16.19, the model achieved a sensitivity of 66.3% and a specificity of 75.39%, allowing one case of beta-cell-MgD identified among every three patients. -16.85 could be used as the screening threshold prioritizing 80% sensitivity (with 59% specificity). Models combining TyG-MgD with East Asian PRS and beta-cell dysfunction-high proinsulin partitioned polygenetic score showed AUCs of 0.842 and 0.834 respectively for indentifying beta-cell-MgD.

Conclusion

We developed a clinical prediction model as a simple screening tool for multi-type beta-cell-MgD, identifying who are most likely to benefit from next genetic sequencing in Chinese population. PRS might be helpful for further screening of MgD.

Il testo completo di questo articolo è disponibile in PDF.

Graphical abstract




Image, graphical abstract

Il testo completo di questo articolo è disponibile in PDF.

Key words : Beta cell monogenetic diabetes, Insulin resistance, Maturity-onset diabetes of the young, Polygenetic risk score, Triglyceride-glucose index


Mappa


© 2026  Pubblicato da Elsevier Masson SAS.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.