Abbonarsi

Predicting cesarean delivery with decision tree models - 05/09/11

Doi : 10.1067/mob.2000.108891 
Cynthia J. Sims, MDa, Leslie Meyn, BSa, Rich Caruana, PhDb, c, R.Bharat Rao, PhDd, Tom Mitchell, PhDb, Marijane Krohn, PhDa
Pittsburgh, Pennsylvania, Los Angeles, California, and Princeton, New Jersey 
From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh School of Medicine,a the Center for Automated Learning and Discovery, Carnegie Mellon University,b the Department of Radiology, School of Medicine, Department of Computer Science, School of Engineering, University of California Los Angeles,c and Siemens Corporate Research Inc.d 

Abstract

Objective: The purpose of this study was to determine whether decision tree–based methods can be used to predict cesarean delivery. Study Design: This was a historical cohort study of women delivered of live-born singleton neonates in 1995 through 1997 (22,157). The frequency of cesarean delivery was 17%; 78 variables were used for analysis. Decision tree rule-based methods and logistic regression models were each applied to the same 50% of the sample to develop the predictive training models and these models were tested on the remaining 50%. Results: Decision tree receiver operating characteristic curve areas were as follows: nulliparous, 0.82; parous, 0.93. Logistic receiver operating characteristic curve areas were as follows: nulliparous, 0.86; parous, 0.93. Decision tree methods and logistic regression methods used similar predictive variables; however, logistic methods required more variables and yielded less intelligible models. Among the 6 decision tree building methods tested, the strict minimum message length criterion yielded decision trees that were small yet accurate. Risk factor variables were identified in 676 nulliparous cesarean deliveries (69%) and 419 parous cesarean deliveries (47.6%). Conclusion: Decision tree models can be used to predict cesarean delivery. Models built with strict minimum message length decision trees have the following attributes: Their performance is comparable to that of logistic regression; they are small enough to be intelligible to physicians; they reveal causal dependencies among variables not detected by logistic regression; they can handle missing values more easily than can logistic methods; they predict cesarean deliveries that lack a categorized risk factor variable. (Am J Obstet Gynecol 2000;183:1198-206.)

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Decision trees, machine learning, predicting cesarean delivery, statistical models


Mappa


 Supported by a McCune Foundation grant.
☆☆ Reprint requests: Cynthia J. Sims, MD, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Hospital, Pittsburgh, PA 15213.


© 2000  Mosby, Inc. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 183 - N° 5

P. 1198-1206 - novembre 2000 Ritorno al numero
Articolo precedente Articolo precedente
  • Elective repeat cesarean delivery versus trial of labor: A meta-analysis of the literature from 1989 to 1999
  • Ellen L. Mozurkewich, Eileen K. Hutton
| Articolo seguente Articolo seguente
  • Maternal deaths in an urban perinatal network, 1992-1998
  • Andrea Panting-Kemp, Stacie E. Geller, Tuan Nguyen, Louise Simonson, Bahij Nuwayhid, Lony Castro

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.