Abbonarsi

Development and validation of an algorithm for classifying colonoscopy indication - 23/02/15

Doi : 10.1016/j.gie.2014.07.031 
Jeffrey K. Lee, MD, MAS 1, , Christopher D. Jensen, PhD, MPH 2, Alexander Lee, MD 1, Chyke A. Doubeni, MD, MPH 3, Ann G. Zauber, PhD 4, Theodore R. Levin, MD 2, Wei K. Zhao, MPH 2, Douglas A. Corley, MD, PhD 2
1 Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, California, USA 
2 Division of Research, Kaiser Permanente Northern California, Oakland, California, USA 
3 Department of Family Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 
4 Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA 

Reprint requests: Jeffrey Lee, MD, MAS, University of California, San Francisco, Division of Gastroenterology, 513 Parnassus Ave, Room S-357, San Francisco, CA.

Abstract

Background

Accurate determination of colonoscopy indication is required for managing clinical programs and performing research; however, existing algorithms that use available electronic databases (eg, diagnostic and procedure codes) have yielded limited accuracy.

Objective

To develop and validate an algorithm for classifying colonoscopy indication that uses comprehensive electronic medical data sources.

Design

We developed an algorithm for classifying colonoscopy indication by using commonly available electronic diagnostic, pathology, cancer, and laboratory test databases and validated its performance characteristics in comparison with a comprehensive review of patient medical records. We also evaluated the influence of each data source on the algorithm’s performance characteristics.

Setting

Kaiser Permanente Northern California healthcare system.

Patients

A total of 300 patients who underwent colonoscopy between 2007 and 2010.

Interventions

Colonoscopy.

Main Outcome Measurements

Algorithm’s sensitivity, specificity, and positive predictive value (PPV) for classifying screening, surveillance, and diagnostic colonoscopies. The reference standard was the indication assigned after comprehensive medical record review.

Results

For screening indications, the algorithm’s sensitivity was 88.5% (95% confidence interval [CI], 80.4%-91.7%), specificity was 91.7% (95% CI, 87.0%-95.1%), and PPV was 83.3% (95% CI, 74.7%-90.0%). For surveillance indications, the algorithm’s sensitivity was 93.4% (95% CI, 86.2%-97.5%), specificity was 92.8% (95% CI, 88.4%-95.9%), and PPV was 85.0% (95% CI, 76.5%-91.4%). The algorithm’s sensitivity, specificity, and PPV for diagnostic indications were 81.4% (95% CI, 73.0%-88.1%), 96.8% (95% CI, 93.2%-98.8%), and 93.9% (95% CI, 87.2%-97.7%), respectively.

Limitations

Validation was confined to a single healthcare system.

Conclusion

An algorithm that uses commonly available modern electronic medical data sources yielded a high sensitivity, specificity, and PPV for classifying screening, surveillance, and diagnostic colonoscopy indications. This algorithm had greater accuracy than the indication listed on the colonoscopy report.

Il testo completo di questo articolo è disponibile in PDF.

Abbreviations : CRC, ICD-9, KPNC, PPV


Mappa


 DISCLOSURE: J. Lee received a grant from theNational Institute of Diabetes and Digestive and Kidney Diseases(T32 DK007007), and D. Corley, T. Levin, A. Zauber, and C. Doubeni received a grant from theNational Cancer Institute(U54 CA163262). All other authors disclosed no financial relationships relevant to this article.
 If you would like to chat with an author of this article, you may contact Dr Lee at jeff.lee@ucsf.edu.


© 2015  American Society for Gastrointestinal Endoscopy. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 81 - N° 3

P. 575 - marzo 2015 Ritorno al numero
Articolo precedente Articolo precedente
  • Detection rates of premalignant polyps during screening colonoscopy: Time to revise quality standards?
  • William A. Ross, Selvi Thirumurthi, Patrick M. Lynch, Asif Rashid, Mala Pande, Mehnaz A. Shafi, Jeffrey H. Lee, Gottumukkala S. Raju
| Articolo seguente Articolo seguente
  • Efficacy and adverse events of EMR and endoscopic submucosal dissection for the treatment of colon neoplasms: a meta-analysis of studies comparing EMR and endoscopic submucosal dissection
  • Mikihiro Fujiya, Kazuyuki Tanaka, Tatsuya Dokoshi, Motoya Tominaga, Nobuhiro Ueno, Yuhei Inaba, Takahiro Ito, Kentaro Moriichi, Yutaka Kohgo

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.