Abbonarsi

Novel Computer-Aided Diagnosis Software for the Prevention of Retained Surgical Items - 22/11/21

Doi : 10.1016/j.jamcollsurg.2021.08.689 
Shun Yamaguchi, MD a, Akihiko Soyama, MD, PhD, FACS a, Shinichiro Ono, MD, PhD d, Shin Hamauzu, ME e, Masahiko Yamada, ME e, Toru Fukuda, BHSc f, Masaaki Hidaka, MD, PhD, FACS a, b, Toshiyuki Tsurumoto, MD, PhD c, Masataka Uetani, MD, PhD b, Susumu Eguchi, MD, PhD, FACS a,
a Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan 
b Department of Radiological Sciences, Nagasaki University Graduate School of Biomedical Sciences 
c Department of Macroscopic Anatomy, Nagasaki University Graduate School of Biomedical Sciences 
d Department of Digestive and General Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan 
e Imaging Technology Center, Research and Development Management Headquarters, FUJIFILM Corporation, Tokyo, Japan 
f Department of Radiology, Nagasaki University Hospital 

Correspondence address: Susumu Eguchi, MD, PhD, FACS, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki 852-8501, Japan.Department of SurgeryNagasaki University Graduate School of Biomedical SciencesSakamoto 1-7-1Nagasaki852-8501Japan

Abstract

Background

Retained surgical items are a serious human error. Surgical sponges account for 70% of retained surgical items. To prevent retained surgical sponges, it is important to establish a system that can identify errors and avoid the occurrence of adverse events. To date, no computer-aided diagnosis software specialized for detecting retained surgical sponges has been reported. We developed a software program that enables easy and effective computer-aided diagnosis of retained surgical sponges with high sensitivity and specificity using the technique of deep learning, a subfield of artificial intelligence.

Study Design

In this study, we developed the software by training it through deep learning using a dataset and then validating the software. The dataset consisted of a training set and validation set. We created composite x-rays consisting of normal postoperative x-rays and surgical sponge x-rays for a training set (n = 4,554) and a validation set (n = 470). Phantom x-rays (n = 12) were prepared for software validation. X-rays obtained with surgical sponges inserted into cadavers were used for validation purposes (formalin: Thiel's method = 252:117). In addition, postoperative x-rays without retained surgical sponges were used for the validation of software performance to determine false-positive rates. Sensitivity, specificity, and false positives per image were calculated.

Results

In the phantom x-rays, both the sensitivity and specificity in software image interpretation were 100%. The software achieved 97.7% sensitivity and 83.8% specificity in the composite x-rays. In the normal postoperative x-rays, 86.6% specificity was achieved. In reading the cadaveric x-rays, the software attained both sensitivity and specificity of >90%.

Conclusions

Software with high sensitivity for diagnosis of retained surgical sponges was developed successfully.

Il testo completo di questo articolo è disponibile in PDF.

Visual Abstract




Il testo completo di questo articolo è disponibile in PDF.

Mappa


 Disclosure Information: This study was supported in part by the research grant from FUJIFILM Corporation.


© 2021  American College of Surgeons. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 233 - N° 6

P. 686-696 - dicembre 2021 Ritorno al numero
Articolo precedente Articolo precedente
  • Effect of Wound Contamination on Outcomes of Abdominal Wall Reconstruction Using Acellular Dermal Matrix: 14-Year Experience with More than 700 Patients
  • Abbas M. Hassan, Malke Asaad, Allison J. Seitz, Jun Liu, Charles E. Butler
| Articolo seguente Articolo seguente
  • Crisis Containment: Tools for Harm Mitigation in Surgery
  • Petrut Gogalniceanu, Nicos Kessaris, Nikolaos Karydis, Ioannis Loukopoulos, Nick Sevdalis, Nizam Mamode

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.