Abbonarsi

Liver imaging reporting and data system (LI-RADS) v2018: Reliability and agreement for assessing hepatocellular carcinoma locoregional treatment response - 03/11/22

Doi : 10.1016/j.diii.2022.06.007 
Ahmed S. Abdelrahman a, , Mena E.Y. Ekladious a, Ethar M. Badran b, Sherihan S. Madkour a
a Radiology Department, Faculty of Medicine, Ain Shams University, 11591 Cairo, Egypt 
b Department of Tropical Medicine, Faculty of Medicine, Ain Shams University, 11591 Cairo, Egypt 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Highlights

Liver imaging reporting and data system (LI-RADS) treatment response algorithm (LR-TR) v2018 has excellent diagnostic performance and reliability for the diagnosis of residual hepatocellular carcinoma after locoregional treatment.
LR-TR enhancement characteristics and final category show interobserver agreement of 0.815 and 0.795, respectively.
The LR-TR algorithm v2018 is recommended for reporting hepatocellular carcinoma treatment response after locoregional therapy.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Purpose

The purpose of this study was to determine the reliability and interobserver agreement of the liver imaging reporting and data system (LI-RADS) treatment response algorithm (LR-TR) v2018 using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and the added value of diffusion-weighted imaging (DWI).

Materials and methods

A total of 54 patients who underwent DCE-MRI and DWI after locoregional treatment of 81 hepatocellular carcinoma (HCC) lesions from September 2020 to July 2021 were included. There were 47 men and 7 women, with a mean age of 63.9 ± 9.2 (SD) years (age range: 23–77 years). Locoregional treatments included transarterial chemoembolization (TACE) (53/81; 65.4%), radiofrequency ablation (RFA) (25/81; 30.9%) and microwave ablation (MWA) (3/81; 3.7%). Two independent radiologists retrospectively evaluated DCE-MRI examinations obtained after locoregional treatment using LR-TR, and then three months later both radiologists reevaluated DCE-MRI examinations with DWI. Interobserver agreement was assessed using intraclass correlation coefficient (ICC) and Kappa test. Diagnostic performances were evaluated in term of sensitivity, specificity, and area under ROC curve (AUC) using a composite standard of reference that included results of histopathological examinations and follow-up findings.

Results

Using DCE-MRI alone, observer 1 had 83.9% sensitivity (26/31; 95% confidence interval [CI]: 66–95%), 88% specificity (44/50; 95% CI: 76–95%) and 86.4% accuracy (70/81; 95%CI: 77–93%), and observer 2 had 71% sensitivity (22/31; 95% CI: 52–86%), 92% specificity (46/50; 95% CI: 81–98%) and 83.9% accuracy (68/81; 95% CI: 74–91%). For the diagnosis of viable tumors using DCE-MRI with DWI, observer 1 and observer 2 had 87.1% (27/31; 95% CI: 70–96%) and 74.2% (23/31; 95% CI: 55–88%) sensitivity, respectively. The diagnostic performance of DCE-MRI with DWI yielded an AUC (0.875; 95% CI: 0.789–0.962) not different from that of DCE-MRI without DWI (0.859; 95% CI: 0.768–0.951) (P = 0.317). Interobserver agreement for arterial phase hyperenhancement, washout, enhancement similar to pretreatment and DWI findings in all treated HCCs was almost perfect (kappa = 0.815, 0.837, 0.826 and 0.81 respectively). Agreement between observers for LR-TR category was substantial (kappa = 0.795; 95% CI: 0.665–0.924). Interobserver agreement for size of viable HCC was excellent (ICC = 0.938; 95% CI: 0.904–0.960).

Conclusion

LR-TR using DCE-MRI alone or DCE-MRI with DWI are both accurate for detecting viable HCC lesions after locoregional treatment, with no differences in diagnostic performance and excellent interobserver agreement.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Chemoembolization, Hepatocellular carcinoma, LI-RADS treatment response (LR-TR), Magnetic resonance imaging, Radiofrequency ablation

List of abbreviations : ADC, APHE, CBCT, CI, CT, cTACE, DCE, DWI, FOV, HCC, HCV, ICC, LI-RADS, LR-TR, mRECIST, MRI, MWA, NPV, PPV, RECIST, RFA, SD, TACE, TE, TR


Mappa


© 2022  Société française de radiologie. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 103 - N° 11

P. 524-534 - novembre 2022 Ritorno al numero
Articolo precedente Articolo precedente
  • Single-session transarterial chemoembolization combined with percutaneous thermal ablation in liver metastases 3 cm or larger
  • Adrian Kobe, Lambros Tselikas, Frédéric Deschamps, Charles Roux, Alexandre Delpla, Eloi Varin, Antoine Hakime, Thierry De Baère
| Articolo seguente Articolo seguente
  • 3D convolutional neural network model from contrast-enhanced CT to predict spread through air spaces in non-small cell lung cancer
  • Junli Tao, Changyu Liang, Ke Yin, Jiayang Fang, Bohui Chen, Zhenyu Wang, Xiaosong Lan, Jiuquan Zhang

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.